A MOLECULAR ORBITAL TREATMENT OF THE REACTIVITIES OF SUBSTITUTED HETEROAROMATIC COMPOUNDS -- SUPERDELOCALIZABILITY

By Yoshio Ueno, Yoshio Otsiyi and Eigi Imoto

Journal of the Chemical Society of Japan, Vol. 87, No. 7, pp. 665-676, 1966.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. NOVEMBER 1966

A MOLECULAR ORBITAL TREATMENT OF THE REACTIVITIES OF SUBSTITUTED HETEROAROMATIC COMPOUNDS - SUPERDELOCALIZABILITY - (*1)

(Received December 22, 1960)

Yoshio Ueno, Yoshio Otuji, Eiji Imoto (*2)

ABSTRACT

The superdelocalizabilities in monosubstituted heteroaromatic compounds have been calculated as eight π -electron systems in terms of the functions of Coulomb and resonance integrals assigned for heteroatoms and substituents by the Hückel method.

The calculations have shown that (i) the effects of Coulomb integrals for substituents decrease on the order of $S_{r}^{E} > S_{r}^{R} > S_{r}^{N}$, (ii) the effects of Coulomb integrals for heteroatoms decrease in the order of $S_{r}^{N} > S_{r}^{E} > S_{r}^{R}$.

The relations of calculated superdelocalizabilities to the experimental results were discussed.

The value of the superdelocalizability of substituted heteroaromatic <u>/665*</u> compounds is computed as functions of Coulomb integrals and resonance integrals of heteroatoms and substituents by means of Hückel's method.

The effect of Coulomb integrals on the superdelocalizability decreases on the order of $S_r^E > S_r^R > S_r^N$.

The effect of heteroatoms on the superdelocalizability decreases on the order of $s_r^{\ N} > s_r^{\ R} > s_r^{\ E}$. The chemical reactivity of monosubstituted heteroaromatic compounds can be illustrated by superdelocalizability.

This paper is called "Molecular Orbital Treatment of Chemical Properties of Substituted Heteroaromatic Compounds, Report No. 2".

Department of Applied Chemistry, College of Engineering, The University of Osaka Prefecture, Osaka, Japan.

^{*} Numbers in the margin indicate pagination in the original foreign text.

1. INTRODUCTION

In the preceding report $^{(1)}$ we have considered how various stability properties of mono-substituted heteroaromatic compounds — energy of the highest orbit, the order of π -combinations — are dependent on the properties of heteroatoms and substituents by means of simple molecular orbital treatment. When the chemical reactivity of compounds of π -electron systems were discussed with the aid of the simple molecular orbital treatment, superdelocalizability and π -electron density were used with considerable success $^{(2)}$.

In this report, we have investigated the manner in which the superdelocalizability of carbon atoms within mono-substituted heteroaromatic compounds depends on the properties of heteroatoms and substituents of compounds. We also have considered the chemical reactivity of substituted heteroaromatic compounds.

We have assumed that the properties of heteroatoms and substituents /666 are determined by both Coulomb integrals of these atoms and resonance integrals between these atoms and adjacent carbon atoms. (*3)

As for superdelocalizability, there is one for electrophilic reactions (s_r^E) , one for nucleophilic reactions (s_r^N) , and one for radical reactions (s_r^R) . These values are computed by Fukui's method⁽²⁾. Each atom of the compound is numbered similarly to the preceding report⁽¹⁾, as in Figure 1.

Also, the same symbols as are used in (Ref. 1) are employed. In this report, all substituted heteroaromatic compounds are treated as 8π -electron systems; the note 3 of (Ref. 1) may be referred to on this matter.

⁽¹⁾ Preceding report (Report No. 1). Ueno, Otsuji, Imoto. Nippon Kagaku Zasolii, Vol. 87, p. 659, 1966.

⁽²⁾ K. Fukuji, G. Nagata, T. Yonezawa, K. Morokuma. Bull. Chem. Soc., Japan, Vol. 34, p. 230, 1959.

^(*3) In this report we assumed that the Coulomb integral $\alpha_{\!X}$ of heteroatom X for I and II type compounds is $\alpha+\beta$, $\alpha+0.5\beta$, α , $\alpha-0.5\beta$; the resonance integral β_{CX} between the heteroatom X and the adjacent carbon is β , 0.6 β , 0.2 β ; the Coulomb integral $\alpha_{\!Y}$ is $\alpha+2\beta$, $\alpha+1.5\beta$ and $\alpha+0.5\beta$, and the resonance integral β_{CY} between the substituent Y and the adjacent carbon atom is β , 0.6 β , 0.2 β . Also, for type III compounds, we let $\alpha_{\!X}$ be $\alpha+2\beta$, $\alpha+0.5\beta$, α ; β_{CX} be 1.4 β , β , 0.8 β , $\alpha_{\!Y}$ be $\alpha+2\beta$, $\alpha+\beta$, $\alpha+0.5\beta$, α ; and β_{CY} be β .

Figure 1

2. ELECTROPHILIC REACTIVITY SrE

2.1 Monohetero, 5-Membered Ring Components

2.1.1 Effect of Heteroatoms (*5)

In order to study the effect of heteroatoms, the Coulomb integral α_Y is equated with α + β and the resonance integral β_{CY} (between heteroatoms and adjacent carbon atoms) is equated with β . Then $S_r^{\ E}$ is computed by changing the Coulomb integral α_X of heteroatoms from α + β to α - 0.5 β , and the resonance integral β_{CX} between heteroatoms and adjacent carbon atoms from β to 0.2 β . The result is tabulated in Table 1, and the conclusions drawn from Table 1 are described below.

(1) Effect of $\alpha_X^{(*6)}$

1) The order of magnitude of S_r^E changes with α_X .

(i) When the absolute value of α_X is larger than α , S_r^E decreases in the order of $5\frac{th}{}>3\frac{rd}{}>4\frac{th}{}$ in the case of α -substituent, and in the order of $2\frac{nd}{}>5\frac{th}{}>4\frac{th}{}$ in the case of β -substituent. (*7)

^(*4) When the substituent is at the 3rd or 4th position, the number of the substituent Y is described by 3' or 4'.

^(*5) Refer to footnote 4 of (Ref. 1).

^(*6) Refer to footnote 5 of (Ref. 1).

^(*7) When we assume that the absolute value of α_X is larger than "the neighborhood of α ", actually "the neighborhood of α " changes with the other parameters — such as β_{CX} , α_Y , and β_{CY} . Strictly speaking, "the neighborhood of α " is only true when $\alpha_Y = \alpha + \beta$, $\beta_{CY} = \beta$ and β_{CY} is $\beta \sim 0.2\beta$. However, the tendency of S_r^E as a function of the absolute value of α_X is not affected. Thus "the neighborhood of α " only indicates an approximate measure. This footnote applies whenever we specify that a parameter is smaller or larger than a certain value.

VALUE OF s_r^E when α_X is changed to β_{CX} at the monosubstituted, 5-membered ring (where α_Y = α + β , β_{CY} = β)

α-substituent	(0,)		State of			
βcx α _X S _i ε	S2E	SaE	S.E	S ₅ E	A. C A . S2, E .	Υ.
$(\alpha + \beta) \qquad (1.293)$	0 👫 🤔 1.6320	8 🕛 🖽 🗆 2.4317	1.5410	2.5962	3.0962	٠,
B 11.1 4	4 au 1.901		4.5.5		(2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	(1) 24.
α 2.420				1.1	V-024.8	
$\alpha = 0.5 \beta$ 4.477	5 4.429	8 2.4159	4.4515	2.4119		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.00			4 . 3.4 .	443764	11.
$\begin{array}{c c} 0.6 \beta & \alpha & \alpha & 0.5 \beta & 2.614 \\ \alpha & 5.973 & 5.973 \end{array}$		* 1 to " () 1 y	4	. 11		
α-0.5βο -	2.003	o 2.4391	2.3070	2.5970	Broken - 13	
마음하다 전쟁하는 보고 보다 (Arthur Carlot)	Y. A.	0 1000	0.000	0 0000	9 9471	"
$\begin{cases} \alpha + \beta & 1.958 \\ \alpha + 0.5 \beta & 3.767 \end{cases}$			and the state of t	2.8333		3 ¥
0.2β α 50.142			1.46	2.7924	A Company of the Comp	†*) **:
$\alpha = 0.5 \beta$	-		-		- :	
- 2* 35 43° % & 2	At a Maria					
β-substituent			1994	T随 点入。	deficially and	١,
	S,E	S ₂ E	S.E		187.32	
eta_{CX} $lpha_{X}$ $lpha_{X}$	S2E		S,E	S, 5	ME Save	Y,
β cx α x S_1E $\alpha + \beta$ 1.347	7 2.543	5 1.5334	1.4872	S,5	S ₃ ,E	製造の地
$\beta_{CX} \qquad \alpha_{X} \qquad S_{1}^{E}$ $\alpha + \beta \qquad 1.347$ $\alpha + 0.5 \beta \qquad 1.748$	7 2.543 1 2.485	5 1.5334 2 1.8482	1.4872 1.4857	S, 5 1.6621 1.9068	3.0721 3.4012	有事品等信
$\beta_{CX} \qquad \alpha_{X} \qquad S_{1}^{E}$ $\alpha + \beta \qquad 1.347$ $\alpha + 0.5 \beta \qquad 1.748$	7 2.543 1 2.485 6 2.420	5 1.5334 2 1.8482 2 2.4987	1.4872 2 1.4857 7 2.4202	5,5 1.6621 1.9068 2.4796	3.0721 3.4012 4.0648	有能力的人员
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 2.543 1 2.485 6 2.420 9 2.355	5 1.5334 2 1.8482 2 2.498 0 4.4863	1.4872 2 1.4857 7 2.4202 5 4.3934	S, 5 1.6621 1.9068 2.4796 4.3893	S ₃ , E 3.0721 3.4012 4.0648 6.0628	新加州市市
$ \beta_{CX} \qquad \alpha_{X} \qquad S_{1}^{E} $ $ \begin{cases} \alpha + \beta & 1.347 \\ \alpha + 0.5 \beta & 1.748 \\ \alpha & 2.479 \\ \alpha - 0.5 \beta & 4.529 \end{cases} $ $ \begin{cases} \alpha + \beta & 1.726 \\ \alpha + 0.5 \beta & 2.693 \end{cases} $	7 2.543 1 2.485 6 2.420 9 2.355 2 2.685	5 1.5334 2 1.8482 2 2.498 0 4.4863 5 1.1563	1 .4872 2 1.4857 7 2.4202 5 4.3934 5 1.1724	S, 5 1.6621 1.9068 2.4796 4.3893	S ₃ , E 3.0721 3.4012 4.0648 6.0628 2.6310	· · · · · · · · · · · · · · · · · · ·
$ \beta_{CX} \qquad \alpha_{X} \qquad S_{1}^{E} $ $ \begin{cases} \alpha + \beta & 1.347 \\ \alpha + 0.5 \beta & 1.748 \\ \alpha & 2.479 \\ \alpha - 0.5 \beta & 4.529 \end{cases} $ $ \begin{cases} \alpha + \beta & 1.726 \end{cases} $	7 2.543 1 2.485 6 2.420 9 2.355 2 2.685 2 2.627	5 1.5334 2 1.8482 2 2.498 0 4.4865 5 1.1566 7 1.4305	1.4872 2.1.4857 7.2.4202 5.4.3934 5.1.1724 2.1.4225	1.6621 1.9068 2.4796 4.3893 1.4648 1.6648	3.0721 3.4012 4.0648 6.0628 2.6310 2.9275	新加州· · · · · · · · · · · · · · · · · · ·
$\beta_{\text{CX}} \qquad \alpha_{\text{X}} \qquad S_{1}^{E}$ $\begin{cases} \alpha + \beta & 1.347 \\ \alpha + 0.5 \beta & 1.748 \\ \alpha & 2.479 \\ \alpha - 0.5 \beta & 4.529 \end{cases}$ $\begin{cases} \alpha + \beta & 1.726 \\ \alpha + 0.5 \beta & 2.693 \end{cases}$	7 2.543 1 2.485 6 2.420 9 2.355 2 2.685 2 2.627	5 1.5334 2 1.8482 2 2.498 0 4.4865 5 1.1566 7 1.4305	1.4872 2.1.4857 7.2.4202 5.4.3934 5.1.1724 2.1.4225	S, 5 1.6621 1.9068 2.4796 4.3893 4.1.4648 5.1.6648	3.0721 3.4012 4.0648 6.0628 2.6310 2.9275	高级公共区域市区区域
$\beta_{\text{CX}} \qquad \alpha_{\text{X}} \qquad S_{1}^{E}$ $\begin{cases} \alpha + \beta & 1.347 \\ \alpha + 0.5 \beta & 1.748 \\ \alpha & 2.479 \\ \alpha - 0.5 \beta & 4.529 \end{cases}$ $\begin{cases} \alpha + \beta & 1.726 \\ \alpha + 0.5 \beta & 2.693 \\ \alpha & 6.079 \end{cases}$	7 2.543 1 2.485 6 2.420 9 2.355 2 2.685 2 2.627 4 2.539	5 1.5334 2 1.8482 2 2.4987 0 4.4863 5 1.1563 7 1.4302 5 2.5530	1 .4872 2 1.4857 7 2.4202 5 4.3934 5 1.1724 2 1.4221 0 2.5144	S, 5 1.6621 1.9068 2.4796 4.3893 4.1.4648 1.6648 2.6773	S ₃ , E 3.0721 3.4012 4.0648 6.0628 2.6310 2.9275 4.0785 2.2378	\$P\$
$\beta_{\text{CX}} \qquad \alpha_{\text{X}} \qquad S_{1}^{\text{E}}$ $\begin{cases} \alpha + \beta & 1.347 \\ \alpha + 0.5 \beta & 1.748 \\ \alpha & 2.479 \\ \alpha - 0.5 \beta & 4.529 \end{cases}$ $\begin{cases} \alpha + \beta & 1.726 \\ \alpha + 0.5 \beta & 2.693 \\ \alpha & 6.079 \\ \alpha - 0.5 \beta & \end{cases}$ $\begin{cases} \alpha + \beta & 1.970 \\ \alpha + 0.5 \beta & 3.793 \end{cases}$	7 2.543 1 2.485 6 2.420 9 2.355 2 2.685 2 2.627 4 2.539 5 2.805	5 1.5334 2 1.8482 2 2.4987 0 4.4863 5 1.1563 7 1.4303 5 2.5530 6 0.8463 2 0.9043	1 .4872 2 1.4857 7 2.4202 5 4.3934 5 1.1724 2 1.4225 0 2.5144 — 9 0.9425 3 0.9918	S, 5 1.6621 1.9068 2.4796 4.3893 4.1.4648 5.1.6648 2.6773 2.1.3254 3.1.3641	S ₃ , E 3.0721 3.4012 4.0648 6.0628 2.6310 2.9275 4.0785 2.2378 2.3031	新加州的人名英格兰的 新的
$\beta_{CX} \qquad \alpha_{X} \qquad S_{1}^{E}$ $\begin{cases} \alpha + \beta & 1.347 \\ \alpha + 0.5 \beta & 1.748 \\ \alpha & 2.479 \\ \alpha - 0.5 \beta & 4.529 \end{cases}$ $\begin{cases} \alpha + \beta & 1.726 \\ \alpha + 0.5 \beta & 2.693 \\ \alpha & 6.079 \\ \alpha - 0.5 \beta &$	7 2.543 1 2.485 6 2.420 9 2.355 2 2.685 2 2.627 4 2.539 5 2.805 6 2.792	5 1.5334 2 1.8482 2 2.498 0 4.4863 5 1.1563 7 1.4303 5 2.5530 6 0.8463 2 0.9043	1 .4872 2 1.4857 7 2.4202 5 4.3934 5 1.1724 2 1.4225 0 2.5144 — 9 0.9425 3 0.9918	S, 5 1.6621 1.9068 2.4796 4.3893 4.1.4648 5.1.6648 2.6773 2.1.3254 3.1.3641	S ₃ , E 3.0721 3.4012 4.0648 6.0628 2.6310 2.9275 4.0785 2.2378 2.3031	不能心理的 不可以行政

Note (a): Because the highest orbital becomes an anti-bonding orbital (refer to Note b of the preceding Report 1), the value of S_r^E cannot be computed.

(ii) When the absolute value of α_X is smaller than α , S_r^E decreases in the order of $4\frac{th}{}>5\frac{th}{}>3\frac{rd}{}$ for α -substituent, and in the order of $4\frac{th}{}>5\frac{th}{}>2\frac{nd}{}$ for β -substituent.

2) Irrespective of β_{CX} , the following conclusions can be drawn:

(i) α -substituent; as the absolute value of α -substituents

increases, S_4^E decreases, but S_5^E and S_3^E slightly increase.

(ii) β -substituent; as the absolute value of α_X increases, $S_2{}^E$ slightly increases, but $S_4{}^E$ and $S_5{}^E$ decrease. The decrease of $S_4{}^E$ is larger than that of $S_5{}^E$.

(2) Effect of β_{CX} (*8)

- 1) The maximum site of S_r^E is determined by α_X for both α -substituent and β -substituent, and it does not depend on β_{CX} .
 - 2) The effect of β_{CX} on S_r^E is different from that of α_X .
- (i) When the absolute value of α_X is larger than α , $S_4{}^E$ increases as the absolute value of β_{CX} increases for α -substituents, but $S_3{}^E$ and $S_5{}^E$ decrease. The decrease of $S_5{}^E$ is larger than that of $S_3{}^E$. In the case of β -substituents, $S_2{}^E$ decreases as the absolute value of β_{CX} increases, but $S_4{}^E$ and $S_5{}^E$ increase. The increase of $S_4{}^E$ is larger than that of $S_5{}^E$, and the increase of $S_3{}^E$ is larger than that of $S_5{}^E$.
- (ii) When the absolute value of α_X is smaller than α , $S_r{}^E$ decreases as the absolute value of β_{CX} increases for both $\alpha-$ and $\beta-$ substituents. The rate of decrease is on the order of $S_5{}^E \ \underline{\circ}\ S_4{}^E > S_3{}^E$ for $\alpha-$ substituent, and $S_5{}^E > S_2{}^E \ \widehat{\circ}\ S_4{}^E$ for $\beta-$ substituent.

2.1.2 Effect of Substituent Base

In order to evaluate the effect of the substituent base, the Coulomb integral α_X of heteroatoms is equated with $\alpha+0.5\beta$, and the resonance integral β_{CX} between heteroatoms and adjacent carbon atoms is equated with 0.6 β . Then $S_r^{\ E}$ is computed by changing the Coulomb integral α_Y from $\alpha+2\beta$ to $\alpha+0.5\beta$, and the resonance integral β_{CY} from $\alpha+2\beta$ to $\alpha+0.5\beta$. $S_r^{\ E}$ is computed by changing the resonance integral β_{CY} between the substituent bases and the adjacent carbon atoms from β to 0.2 β . The result is tabulated in Table 2. Since the maximum orbital becomes an antibonding orbital when the absolute value of α_Y becomes smaller than α and since $S_r^{\ E}$ cannot be computed, α_Y is chosen in the range specified above. The conclusions drawn from Table 2 are described below.

(1) Effect of α_Y

1) Both for $\alpha-$ and $\beta-substituents, the maximum site of <math display="inline">S_r{}^E$ is determined by $\alpha_X^{}$, and it does not depend on $\alpha_Y^{}$.

^(*8) Refer to footnote 7 of (Ref. 1).

TABLE 2 THE VALUE OF s_r^E WHEN α_Y AND β_{CY} ARE CHANGED IN MONOSUBSTITUTED, 5-MEMBERED RINGS (WHERE α_X = α + 0.5 β , β_{CX} = 0.6 β)

	α-substituent ·	the state of	100 100 to 100 100 100 100 100 100 100 100 100 10	england in recipions in the second	The second secon
βςΥ	α_{Y} S_{i}^{E}	S_2^E	S ₃ E	S,E S,E	S ₂ , E
AW BURN	$\alpha + 2\beta$ 2.2519	1.4927	1.6659	1.3120 1.8909	1.2495
A	$\alpha + 1.5 \beta$ 2.3528			1.3562 2.1148	1.7634
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1.4610 . 2.6744	2.9832
	$(\alpha + 0.5 \beta) = 4.2549$) (1.65.8593 t.) (1.65.15)	2.0665 6 0.0772	9.9744
384.0.1	$\alpha + 2\beta$ 2.1144			1.2367 , 6 1.5544	1.0857
0.6β	$\alpha + 1.5 \beta = 0.1398$	- A. V. 3- 1			1.4764
	$\alpha + \beta$ 2.1981	A 14 1			2.2997
this in the	$(\alpha + 0.5 \beta)$ 2.4263	1 1			5.1804
$-(A340.4a_{\odot})$	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$				1.0093
0.2β	$\alpha + 1.5 \beta$ 10 2.0651				1.3487
No. Kr. CF	$\alpha + \beta$ 2.0702 $\alpha + 0.5 \beta$ 2.0875	4.5			2.0313 4.1096
	(u +0.5 p : 180 2.0075	(11.11.11.11.11.11.11.11.11.11.11.11.11.	1.1001 100	1.2150 1. 1.4741	1.1030
			and the second s	and the control of th	2.5
	β-substituent			F 33350	
, вс ч	β -substituent α_{Y} S_{1}^{E}	$\mathcal{S}_2 ^E$	$S_8 E$	S.E	S_3 , E
βcv	$\alpha_{\rm Y}$ S_1^E $\alpha + 2\beta$ 2.3071	1,8585	1.3001	1.2814 0 4 1.5150	1.2218
	$ \begin{array}{c} \alpha_{Y} & S_{1}^{E} \\ \begin{pmatrix} \alpha + 2\beta & 2.3071 \\ \alpha + 1.5\beta & 2.4181 \end{array} $	1.8585	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.2814 0 0 1.5150 1.3218 0 1.5595	1.2218 1.7248
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(1.8585 (2.0765 (2.6277	$\begin{array}{c c} 1.3001 & 0.3371 & 0.3$	1.2814 _{.0} 6 1.5150 1.3218 _{.0} 0 1.5595 1.4225 _{.0} 0 1.6648	1.2218 1.7248 2.9275
	$\begin{cases} \alpha_{Y} & S_{1}^{E} \\ \alpha + 2\beta & 2.3071 \\ \alpha + 1.5\beta & 2.4181 \\ \alpha + \beta & 2.6932 \\ \alpha + 0.5\beta & 4.3524 \end{cases}$	1.8585 2.0765 02.6277 6.0169	1.3001 1.3371 1.4302 p 0 2.0157	1.2814 0 1.5150 1.3218 0 1.5595 1.4225 0 1.6648 2.0249 (2.2715	1.2218 1.7248 2.9275 9.8924
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.8585 2.0765 2.6277 6.0169	1.3001 1.3371 1.4302 ; 0 2.0157 1.2336	1.2814 _{.0}	1.2218 1.7248 2.9275 9.8924 1.0745
	$ \begin{array}{c} \alpha_{Y} & S_{1}^{E} \\ \alpha + 2\beta & 2.3071 \\ \alpha + 1.5\beta & 2.4181 \\ \alpha + \beta & 2.6932 \\ \alpha + 0.5\beta & 4.3524 \end{array} $ $ \begin{cases} \alpha + 2\beta & 2.1362 \\ \alpha + 1.5\beta & 2.1664 \end{cases} $	1.8585 2.0765 2.6277 6.0169 1.5433	1.3001 1.3371 1.4302 ; 0 2.0157 1.2336 1.2439	1.2814 0 1.5150 1.3218 0 1.5595 1.4225 0 1.6648 2.0249 0 2.2715 1.2247 1.4395 1.2354 1.4522	1.2218 1.7248 2.9275 9.8924 1.0745 f.4601
teen was	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.8585 2.0765 2.6277 6.0169 1.5433 1.6011	1.3001 1.3371 1.4302 2.0157 1.2336 1.2439 1.2661	1.2814 0 1.5150 1.3218 0 1.5595 1.4225 0 1.6648 2.0249 0 2.2715 1.2247 1.4395 1.2354 1.4522 1.2593 1.4786	1.2218 1.7248 2.9275 9.8924 1.0745 f.4601 2.2739
teen was	$\begin{array}{c} \alpha_{Y} & S_{1}^{E} \\ \alpha + 2\beta & 2.3071 \\ \alpha + 1.5\beta & 2.4181 \\ \alpha + \beta & 2.6932 \\ \alpha + 0.5\beta & 4.3524 \\ \begin{pmatrix} \alpha + 2\beta & 2.1362 \\ \alpha + 1.5\beta & 2.1664 \\ \alpha + \beta & 2.2321 \\ \alpha + 0.5\beta & 2.4723 \end{array}$	1.8585 2.0765 0.2.6277 6.0169 1.5433 1.6011 1.7297 2.2133	1.3001 1.3371 1.4302 2.0157 1.2336 1.2439 1.2661 1.3491	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.2218 1.7248 2.9275 9.8924 1.0745 f.4601 2.2739 5.1358
teen was	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.8585 2.0765 0.2.6277 6.0169 1.5433 1.7297 2.2133 1.417	1.3001 1.3371 1.4302 2.0157 1.2336 1.2439 1.2661 1.3491 1.2035	1.2814 0 1.5150 1.3218 0 1.5595 1.4225 0 1.6648 2.0249 6 2.2715 1.2247 1.4395 1.2354 1.4522 1.2593 1.4786 1.3471 1.5695 1.2024 1.4065	1.2218 1.7248 2.9275 9.8924 1.0745 f.4601 2.2739 5.1358 1.0080
teen was	$\begin{array}{c} \alpha_{Y} & S_{1}^{E} \\ \alpha + 2\beta & 2.3071 \\ \alpha + 1.5\beta & 2.4181 \\ \alpha + \beta & 2.6932 \\ \alpha + 0.5\beta & 4.3524 \\ \begin{pmatrix} \alpha + 2\beta & 2.1362 \\ \alpha + 1.5\beta & 2.1664 \\ \alpha + \beta & 2.2321 \\ \alpha + 0.5\beta & 2.4723 \\ \begin{pmatrix} \alpha + 2\beta & 2.0653 \\ \alpha + 1.5\beta & 2.0662 \\ \end{pmatrix} \end{array}$	1.8585 2.0765 02.6277 6.0169 1.5433 1.6011 2.2133 1.417)	1.3001 1.3371 1.4302 2.0157 1.2336 1.2439 1.2661 1.3491 1.2035 1.2045	1.2814 0 1.5150 1.3218 0 1.5595 1.4225 0 1.6648 2.0249 0 2.2715 1.2247 1.4395 1.2354 1.4522 1.2593 1.4786 1.3471 1.5695 1.2024 1.4065 1.2034 1.4078	1.2218 1.7248 2.9275 9.8924 1.0745 f.4601 2.2739 5.1358
0.6 β'	$\begin{array}{c} \alpha_{Y} & S_{1}^{E} \\ \alpha + 2\beta & 2.3071 \\ \alpha + 1.5\beta & 2.4181 \\ \alpha + \beta & 2.6932 \\ \alpha + 0.5\beta & 4.3524 \\ \begin{pmatrix} \alpha + 2\beta & 2.1362 \\ \alpha + 1.5\beta & 2.1664 \\ \alpha + \beta & 2.2321 \\ \alpha + 0.5\beta & 2.4723 \\ \end{pmatrix}$ $\begin{array}{c} \alpha + 2\beta & 2.0653 \\ \alpha + 1.5\beta & 2.0662 \\ \end{array}$	1.8585 2.0765 2.6277 6.0169 1.5433 1.6011 2.2133 1.4177 1.4226	1.3001 1.3371 1.4302 2.0157 1.2336 1.2439 1.2661 1.3491 1.2035 1.2045 1.2045	1.2814 0 1.5150 1.3218 0 1.5595 1.4225 0 1.6648 2.0249 0 2.2715 1.2247 1.4395 1.2354 1.4522 1.2593 1.4786 1.3471 1.5695 1.2024 1.4065 1.2034 1.4078	1.2218 1.7248 2.9275 9.8924 1.0745 f.4601 2.2739 5.1358 1.0080 1.3468

2) Irrespective of $\beta_{CY},~S_r^{~E}$ increases rapidly as the absolute value of α_Y decreases for both $\alpha-$ and $\beta-$ substituents. The rate of increase becomes smaller in the order of $S_5^E > S_3^E > S_4^E$ for $\alpha-$ substituents, and in the order of $S_2^E > S_5^E > S_4^E$ for $\beta-$ substituents.

(2) Effect of β_{CY}

- 1) The maximum site of $S_r{}^E$ is determined by α_X for both $\alpha-$ and $\beta-substituents, and it does not depend on <math display="inline">\beta_{CY}.$
- 2) Irrespective of α_Y , S_r^E increases as the absolute value of β_{CY} increases for both $\alpha-$ and $\beta-$ substituents. The rate of increase becomes smaller in the order of $S_5^E > S_3^E > S_4^E$ for $\alpha-$ substituents,

and in the order of $S_2^E > S_5^E > S_4^E$ for β -substituents.

From these results, the following conclusions can be drawn:

- 1) The site undergoing electrophilic reactions is determined by the electric negativity of heteroatoms. When the electric negativity of heteroatoms is large (e.g., furane and thiophene derivatives), the $5\frac{th}{2h}$ position of α -substituents and the $2\frac{nd}{2}$ position of β -substituents are most reactive. When the electric negativity of heteroatoms is small (e.g., $\alpha_X = \alpha 0.5\beta$ with celenophene derivatives), the $4\frac{th}{2h}$ position of α -substituents, and the $4\frac{th}{2h}$ and $5\frac{th}{2h}$ position of β -substituents are most reactive. According to the experiments, the electrophilic reaction is most reactive at the $5\frac{th}{2h}$ position in the case of α -substituents such as furane or thiophene, except for the case when the substituent base is a strong electron-absorbing base, such as nitro-base. Also, the $2\frac{nd}{2h}$ position is most reactive in the case of β -substituents. (3) Therefore, the experimental results can be illustrated by the value of S_{r} for both α and β -substituents.
- 2) Not only the overlapping of wave functions of heteroatoms /669 and substituent bases with those of adjacent carbon atoms, but also the electric negativity of substituent bases, affects the reactivity. However, they are not influential enough to move the reaction site.

2.2 Monohetero, 6-Membered Ring Compounds

Let the resonance integral β_{CY} between substituent bases and adjacent carbon atoms be β . Then we change the Coulomb integral α_{X} from $\alpha+2\beta$ to α , the resonance integral β_{CX} from 1.4 β to 0.8 β , and the Coulomb integral α_{Y} from $\alpha+2\beta$ to α . We can then compute $S_{T}^{\ E}$ accordingly. The results are shown in Tables 3, 4, 5 and 6. We also give the conclusions drawn from these tables below.

2.2.1 α-Substituent

- (1) The maximum site of S_r^E does not depend on α_X , β_{CX} and α_Y , and it becomes largest at the $3\underline{r}\underline{d}$ position succeeded by the $5\underline{t}\underline{h}$ position.
- (2) When $\beta_{CX} = \beta$ (e.g., pyridine), S_3^E and S_5^E decrease as the absolute value of α_X increases, irrespective of α_Y . The rate of decrease is on the order of $S_5^E > S_3^E$. The effect of α_X on S_4^E and S_6^E is dependent on α_Y .
- (3) When $\alpha_X = \alpha + 0.5\beta$ (e.g., pyridine), S_3^E and S_5^E increase as the absolute value of β_{CX} increases, irrespective of α_Y . The rate of

⁽³⁾ A. A. Morton, "The Chemistry of Heterocyclic Compounds", McGraw Hill, New York, 1946.

TABLE 3 $\text{THE VALUE OF S}_r^E \text{ WHEN } \alpha_X \text{, } \beta_{CX} \text{ AND } \alpha_Y \text{ ARE CHANGED IN } \\ \text{MONOSUBSTITUTED, } 6\text{-MEMBERED RINGS}$

i) α-sub	stitueni	t . (ax=a+	0.5β , $\beta_{\rm CY} = \beta$)			97.4 7 3.79
βсх	αγ	, S ₁ E	S2E 1	S,E	S.E	S5E S0E	S2, B ()
1 1 1	$\alpha + 2\beta$	0.6574	0.6368	1.0077	0.7188 💯 0	.9888 0.69	28 1.0367
1.48	$\alpha + \beta$	0.7582	0.6004	1.2067	0.7188	.1729 0.69	51 2.0064
	$\alpha + 0.5 \beta$	0.9602	0.5679	1.6009	0.7218	.5512 7 0.69	89 3.7321
	α	4.4960	0.6152	8.5228	0.8283 4 8	.4446 1 0.80	40 31.6413
in al.	$\alpha + 2\beta$. 0.9442	. 0.6586	1.0055	0.7199 1 1 0	.9745 0.74	47 1.0279
A	$\alpha + \beta$	1.1082	0.6100	1.1973	0.7203	.1414 🔞 0.75	80 1.9399
The second second	$\alpha + 0.5\beta$	1,4281	0.5730	1.5432	0.7293	.4612	02 3.4346
	α	4.5778	0.6782	4.7373	0.9053 / 4	.6091 . 0.97	98 16.3483
Will All St	$\alpha+2\beta$	1.1892	0.6666	1.0042	0.7169 pt 0		
0.88	$\alpha + \beta$	1.4046	0.6082	1.1887	0.7184	.1137 6 0.80	7.74
5.50	$\alpha + 0.5 \beta$	1.8059	0.5709	1.4927		.3834 0.84	1.1
	' α	4.5834	0.7224	3.3511	0.9648	1.11	02 10.6853
ii) α-su	bstituer	it $(\alpha_x = \alpha +$	2β , $\beta_{\rm CY} = \beta$)			, is the	THE STATE OF THE S
βcx	αγ	S ₁ E	S ₂ E	S ₃ E	S4E	S_5^E S_6	Ε , S ₂ , Ε
	$\alpha + 2\beta$	0.6881	0.4902	1.0038	0.5686	0.68	0.9523
	$\alpha + \beta$	0.7520	0.4561	1.1522	0.6106	0.76	1.6200
3. P 3. 3. 3. 3	$\alpha + 0.5\beta$	0.8626	0.4794	1.3405	0.6950	•	
	α	1.2867	0.7812	1.8809	1.0686	1.6462	4.5894
一种独特的"	17. 19. 19. 19. 19.	$t_{i,j}^{(i)} = -i t_{i,j}^{(i)}$	Sec. 1985	41143	I Salah	· //	

increase is on the order of $S_5{}^E$ > $S_3{}^E$. On the contrary, $S_4{}^E$ and $S_6{}^E$ become smaller on the order of $S_6{}^E$ < $S_4{}^E$.

(4) Irrespective of α_X and β_{CX} , S_r^E decreases as the absolute value of α_Y increases. The rate of decrease is on the order of $S_3^E \sim S_5^E \gg S_4^E \sim S_6^E$.

2.2.2 β -Substituent

- (1) The maximum site of S_r^E changes with β_{CX} , irrespective of α_X and α_Y . It is at the 4th position when β_{CX} is equal to 1.4 β , but it is at the 2nd position when β_{CX} is 0.8 β .
- (2) When $\beta_{CX} = \beta$, S_r^E decreases as the absolute value of α_X increases, irrespective of α_Y . The rate of decrease is on the order of $S_4^E > S_6^E > S_2^E \gg S_5^E$.
- (3) When $\alpha_X = \alpha + 0.5\beta$, $S_4{}^E$ and $S_5{}^E$ decrease as the absolute value of β_{CX} increases, irrespective of α_Y , but $S_2{}^E$ and $S_6{}^E$ decrease.

i) β-sub	stituent	$(\alpha_{X}=\alpha+0.$.5β, β _{CY} =β)	ress for			The state of the s
βcx;	αΥ	S _i E	\mathcal{S}_2^E	S_3E	S.E	S_5E	$S_{\theta}E$	S_3 , E
Since Post ($\alpha + 2\beta$	0.5787	0.8628	0.7948	0.8893	0.8365	0.843	1.0739
1.48		0.5769				7 T	1.050	
		0.5746 mg	*** 3 ** 39	0.7106	₇ (1.5873	0.8304	1.512	25 4.2025
	α •)	- 1100			ARA		-	
		`0.8 160 → ^(*)		- ,				
B		0.8136						1.11.14.4
		0.8101	1.6276	0.7072	1.5725	0.8233	1.536	66 4.2061
	α•)	T PART						
		1.0178		0.7861	0.8812			
0.88		1.0153		0.7462				65 (S) 2.1405
	• •	1.0110	1.6/60	0.7047	1.5538	0.8179	1.544	16 h; 4.2092,
墓, 持有人	α •)	1111		· · · · · · · · · · · · · · · · · · ·			国际联	.48166. (T. 4)
ii) β-sub	stituent	$(\alpha_x = \alpha + 2)$	$\beta_{i} \cdot \beta_{CY} = \beta$				38	356 9
βcx	αγ	S_1^E	S_2E	$S^{9}E$	$S_{\bullet}{}^{E}$	S_5^E	S_0E	V.2. 1 S3'E
\$47 33 1	$\alpha + 2\beta$	0.6488	0.8113	0.7844	0.6821	0.8197	0.721	1.0742
10 B 3	$\alpha + \beta$		1.0661	0.7456				5 V 1
	$\alpha + 0.5 \beta$	0.6470	1.5852	0.7044	1.3147	0.8120	1.324	12 4.2196
	α ⁶⁾	-	(f)	1 📅	· •		· · ·	

Note (a): Since the maximum orbital becomes an anti-bonding orbital [refer to Note 6 of (Ref. 1)], S_r^E cannot be calculated.

(4) Irrespective of α_X and β_{CX} , $S_5{}^E$ slightly increases as the absolute value of α_Y increases, but $S_2{}^E$, $S_4{}^E$, and $S_6{}^E$ decrease.

2.2.3 γ-Substituent

- (1) The maximum site of S_r^E does not depend on α_X , α_Y and β_{CX} .
- (2) When $\beta_{CX} = \beta$, S_3^E and S_2^E decrease, irrespective of α_Y as the absolute value of α_X increases.
- (3) When $\alpha_X = \alpha + 0.5\beta$, $S_3{}^E$ increases irrespective of α_Y as the absolute value of β_{CX} increases, but $S_2{}^E$ decreases.
- (4) Irrespective of α_X and β_{CX} , $S_3{}^E$ and $S_2{}^E$ decrease as the absolute value of β_{CX} increases. The rate of decrease of $S_3{}^E$ is larger than that of $S_2{}^E$.

TABLE 5 THE VALUE OF S $_{r}^{E}$ WHEN $\alpha_{X}^{}$, $\beta_{CX}^{}$ AND $\alpha_{Y}^{}$ ARE CHANGED IN MONOSUBSTITUTED, 6-MEMBERED RINGS

/i) γ-subst	ituent $(\alpha_x = \alpha + 0.5)$	β , β cy = β)		
βcx	$\alpha_{\mathbf{Y}}$ S_1^E	S ₂ E	S,E	S.B S.B
Townson 1	$\alpha + 2\beta$ 0.6521	0.6842	0 1.0001	1.0407
1.48	$\alpha + \beta \qquad \qquad 0.7447$	1, 1,		.6298 . 2.0121
。	$\alpha + 0.5 \beta \Rightarrow 0.9372$	0.6873		3.7372
1,0010,000	α 4.4545	0.7940	(h 8.5148 (j.b) 0	.6368 31.6407
Signification of the second	$\alpha + 2\beta \qquad \qquad 0.9404$		64)	1.0310
B	$\alpha + \beta \qquad 1.0954$	0.7247 jes		1.9496
	$\alpha + 0.5 \beta \qquad 1.4034$		1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,5739 3.4531
主要 在 美型 41	α 4.5315	0.9106	253 a	16.3832
Yu. J. Gelder and B. J.	$\alpha + 2\beta \qquad (1.1874)$	5.7	5 (1)	1.0215
0.88	$\alpha + \beta$ 1.3936	0.7492		.5938 1.8910
	$\alpha + 0.5 \beta$ 1.7835		19	3.2032
The state of the V	α 4.5419	人名 人名	3.2498	.7043
ii) γ-subst	ituent $(\alpha_{x} = \alpha + 2\beta,$	$\beta cx = \beta$)		
βcx	$\alpha_{\mathbf{Y}}$ $S_{\mathbf{i}}^{E}$	S_2E	$S_{\mathbf{s}}^{E}$	SAE SAVE
100000000000000000000000000000000000000	$\alpha + 2\beta$ 45 0.6958	0.6176	. o 0.9370 : [a to 0	.4685 0.9580
The contract of	$\alpha + \beta$ 0.7588			1.6425
Madaga, Jack	$\alpha + 0.5 \beta \iff 0.8669$			2.4547
the factorial field	α. 1.2873	1.1245	in 1.7029	1.7550 4.6620
in the second transformation and	and the second second	and the same of the same	e esti	

From these results we obtain the following conclusions:

- (1) For each of the α -, β and γ -substituents, α_{Y} affects S_{r}^{E} at the o- and p-position through substituent bases. The effect of substituent bases on S_{r}^{E} depends on α_{X} and β_{CX} , as well as on the relative site of substituent bases, heteroatoms, and carbon atoms inside the ring.
- (2) When heteroatoms are at the o- and p-position with respect to substituent bases, S_r^E strongly depends on the electric negativity of heteroatoms at the o- and p-position (the sites of strong electrophilic reactivity due to large S_r^E). As the electric negativity of heteroatoms increases, S_r^E at these sites decreases. Therefore, S_r^E at the $\frac{3rd}{r}$ and $\frac{5th}{r}$ position of α -substituents, as well as at the $\frac{3rd}{r}$ position of the γ -substituents, is smaller than that of the β -substituents at the $\frac{2nd}{r}$ position.
- (3) We nitrated various oxypyridines in a mixed acid at 25° C (70° C for γ -substituent) and obtained the rate of reactivity as shown in Figure 2(4). In these compounds, pyridine bases became reaction cores

⁽⁴⁾ Veno, Hirai, Asakawa, Imoto (unpublished).

TABLE 6

THE VALUE OF s_r^E when α_Y is changed in monosubstituted, 6-membered rings (where $\alpha_X = \alpha$, $\beta_{CY} = \beta$)

ay SiB SE	S_3E	S.E. S.E	SIE SE	SAE SAE
$\alpha + 2\beta$ 0.9950 0.8312 1	.0062	0.7895 1.0730	$\alpha + 0.5 \beta$ 1.6656 0.8248	1.7057 0.7066 4.2011
$\alpha + \beta$ 1.2027 0.8283 1	.2273	0.7485 2.1375		

Note (a): Since the maximum orbital is an anti-bonding orbital S_r^E cannot be computed [refer to Note 6 (Ref. 1)].

themselves. In the figure, S_r^E of every carbon atom is also described inside the parentheses. Except for the α -substituent, S_r^E agrees with experimental results, as may be observed from Figure 2. There are some problems for α -substituents, and we will report on this in a subsequent paper.

Figure 2

 S_r^E of Various Oxypyridines and the Reaction Rate of Nitration (ℓ , mol⁻¹, sec⁻¹)

Parameters used in computation: $\alpha_N = \alpha + 0.5\beta$, $\beta_{CN} = \beta$, $\alpha_{OH} = \alpha + 0.5\beta$, $\beta_{C-OH} = \beta$.

3. NUCLEOPHILIC REACTIVITY $\mathbf{s_r}^{\mathrm{N}}$

3.1 Monohetero, 5-Membered Ring Compounds

3.1.1 Effect of Heteroatoms

Using the same parameters as in 2.1.1 for S_r^E , we may compute S_r^N . The results are shown in Table 7, and the conclusion drawn from the table is described below.

TABLE 7 THE VALUE OF s_r^N when α_Y and β_{CX} are changed in monosubstituted, 5-membered rings (where α_Y = α + β , β_{CY} = β)

α- ε	subst:	ituent	-	16.2				1		1135		111	*
βcx .	$\alpha_{\mathbf{X}}$	- 14 H	S_1N	4.2	S2N		23 W		SAN		S_5N		S2, N
140 1 /	$\alpha + \beta$	$-4\hat{\mathbf{q}}^{(e)}$,	0.2930	1528, 1	0.6328	4.1112	0.4317		0.5410		0.5962		0.09623
July 1		β 1		ž.		£.13	0.4257	3.7	0.5103	- 1	0.5426		0.08008
		0.7				A /see.	0.4202	, KŞ	0.4796	· 40.3	0.4796		0.06478
3. WHO 18 4	$\alpha = 0.8$	1.00			0.4298	6.45	0.4159	the state	0.4515	144.3	0.4119	ын.э.	0.05190
30000	-	აი. • აი				4. 500	0.4581	- 1	0.6664		0.7236	$F(\hat{r}_{ij})$	0.1705
0.6β	$\alpha + 0.$	יייאכ			0.7659 0.6638		0.4500		0.6238		0.6744		0.1460
Section !	$\alpha = 0.5$	5 A	0.4179	7.50 (2) S. 18.8.8		First First	0.4397		0.5678	3	0.5971		0.1151
		a.n.	0.0353	7 200 Y	1.0633	Give-	0 4877	1	0 9764		0.8333		0.2702
		5 8 0 .				, n +			0.8127		0.8222	8	0.2618
0.28	α				0.9947	A > ** * *			0.7813	3	0.7924		0.2431
18 (2005.9°).	$\alpha = 0$.	5 β ()		75 130 E	·	11192			f:	$a_{i,j}(k)$,
A	subst	ituen	t.							, C, 65 c		1 . F B .	
P	54555			7.7									
βcx	αχ	3,00	S_1N		S ₂ N		S,N		S ₄ N		S ₅ N		S ₈ , N
	T	5	S_1N	700,0	. S₂N . 0.5435		S ₈ N - 0.5334		, S ₄ N 0.4872		S ₆ N 0.6621		S ₈ , N 0.07209
βcx (?	$\alpha_{\mathbf{X}}$ $\alpha + \beta$	3	S ₁ N 0.3477	- 1	-			34.4	•		· ·		
βcx (²	α_{X} $\alpha + \beta$ $\alpha + 0$.	5 β 0 (S ₁ N 0.3477 0.4148 0.4796	1167) 1167	0.5435 0.4852 0.4202		0.5334 0.5148 0.4987		0.4872 0.4524 0.4202	3.4 3.4	0.6621 0.5735 0.4796		0.07209 0.06791 0.06478
βcx (²	α_{X} $\alpha + \beta$ $\alpha + 0$.	5 β	S ₁ N 0.3477 0.4148 0.4796 0.5299		0.5435 0.4852		0.5334 0.5148		0.4872 0.4524	3.4 3.4	0.6621 0.5735		0.07209 0.06791
βcx (²	α_{X} $\alpha + \beta$ $\alpha + 0.$ α $\alpha - 0.$ $\alpha + \beta$	5 β () 5 β	\$1.N 0.3477 0.4148 0.4796 0.5299 0.2556		0.5435 0.4852 0.4202 0.3550 0.6855		0.5334 0.5148 0.4987 0.4865 0.6271		0.4872 0.4524 0.4202 0.3934 0.6430		0.6621 0.5735 0.4796 0.3893 0.9354		0.07209 0.06791 0.06478 0.06283 0.1016
βοχ (*) (*) (*) (*) (*) (*) (*) (*) (*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	α_{X} $\alpha + \beta$ $\alpha + 0.$ α $\alpha - 0.$ $\alpha + \beta$	5 β	\$1.N 0.3477 0.4148 0.4796 0.5299 0.2556 0.3676		0.5435 0.4852 0.4202 0.3550 0.6855		0.5334 0.5148 0.4987 0.4865 0.6271 0.5930		0.4872 0.4524 0.4202 0.3934 0.6430 0.5853		0.6621 0.5735 0.4796 0.3893 0.9354 0.8276		0.07209 0.06791 0.06478 0.06283 0.1016 0.09033
βcx (²	α_{X} $\alpha + \beta$ $\alpha + 0.$ α $\alpha - 0.$ $\alpha + \beta$ $\alpha + 0.$ α	5 β · · · · · · · · · · · · · · · · · ·	\$1.N 0.3477 0.4148 0.4796 0.5299 0.2556		0.5435 0.4852 0.4202 0.3550 0.6855		0.5334 0.5148 0.4987 0.4865 0.6271		0.4872 0.4524 0.4202 0.3934 0.6430		0.6621 0.5735 0.4796 0.3893 0.9354	がない。	0.07209 0.06791 0.06478 0.06283 0.1016
βοχ (*) (*) (*) (*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	$\alpha_{\mathbf{X}}$ $\alpha + \beta$ $\alpha + 0$ α $\alpha - 0$ $\alpha + \beta$ $\alpha + 0$ $\alpha - 0$	5 β 5 β 5 β	\$1.\(^\) 0.3477 0.4148 0.4796 0.5299 0.2556 0.3676 0.5239		0.5435 0.4852 0.4202 0.3550 0.6855 0.6277 0.5395		0.5334 0.5148 0.4987 0.4865 0.6271 0.5930 0,5530		0.4872 0.4524 0.4202 0.3934 0.6430 0.5853 0.5144		0.6621 0.5735 0.4796 0.3893 0.9354 0.8276 0.6773		0.07209 0.06791 0.06478 0.06283 0.1016 0.09033 0.07850
βοχ (*) (*) (*) (*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	$\alpha_{\mathbf{X}}$ $\alpha + \beta$ $\alpha + 0$ α $\alpha - 0$ $\alpha + \beta$ $\alpha + 0$ α $\alpha - 0$ $\alpha + \beta$	5 β 5 β 5 β	\$1.\(^\) 0.3477 0.4148 0.4796 0.5299 0.2556 0.3676 0.5239	0	0.5435 0.4852 0.4202 0.3550 0.6855 0.6277 0.5395		0.5334 0.5148 0.4987 0.4865 0.6271 0.5930 0.5530		0.4872 0.4524 0.4202 0.3934 0.6430 0.5853 0.5144		0.6621 0.5735 0.4796 0.3893 0.9354 0.8276 0.6773	A CONTRACTOR OF THE CONTRACTOR	0.07209 0.06791 0.06478 0.06283 0.1016 0.09033 0.07850
βοχ (*) (*) (*) (*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	$\begin{array}{c} \alpha_{X} \\ \alpha+\beta \\ \alpha+0. \\ \alpha \\ \alpha-0. \\ \alpha+\beta \\ \alpha+0. \\ \alpha \\ \alpha-0. \\ \alpha \\ \alpha-0. \\ \alpha+\beta \\ \alpha+0. \end{array}$	5 β 5 β 5 β	\$1N 0.3477 0.4148 0.4796 0.5299 0.2556 0.3676 0.5239 0.0474 0.0899	0	0.5435 0.4852 0.4202 0.3550 0.6855 0.6277 0.5395 0.8056 0.7922		0.5334 0.5148 0.4987 0.4865 0.6271 0.5930 0.5530		0.4872 0.4524 0.4202 0.3934 0.6430 0.5853 0.5144		0.6621 0.5735 0.4796 0.3893 0.9354 0.8276 0.6773		0.07209 0.06791 0.06478 0.06283 0.1016 0.09033 0.07850
βcx (δ. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	$\alpha_{\mathbf{X}}$ $\alpha + \beta$ $\alpha + 0$ α $\alpha - 0$ $\alpha + \beta$ $\alpha + 0$ α $\alpha - 0$ $\alpha + \beta$	5 β	\$1.\(^\) 0.3477 0.4148 0.4796 0.5299 0.2556 0.3676 0.5239	0	0.5435 0.4852 0.4202 0.3550 0.6855 0.6277 0.5395		0.5334 0.5148 0.4987 0.4865 0.6271 0.5930 0.5530		0.4872 0.4524 0.4202 0.3934 0.6430 0.5853 0.5144		0.6621 0.5735 0.4796 0.3893 0.9354 0.8276 0.6773	A A STATE OF THE S	0.07209 0.06791 0.06478 0.06283 0.1016 0.09033 0.07850

(1) Effect of α_X

- 1) The order of magnitude of $S_r{}^N$ depends on α_X .
- (i) When the absolute value of α_X is larger than α , $S_r{}^N$ becomes smaller in the order of $5\frac{th}{}$ > $4\frac{th}{}$ > $3\frac{rd}{}$ for the α -substituent, and in the order of $5\frac{th}{}$ > $2\frac{nd}{}$ > $4\frac{th}{}$ for the β -substituent.
- (ii) When the absolute value of α_X is smaller than α , S_r^N becomes smaller in the order of $4\frac{th}{>} 5\frac{th}{>} 3\frac{rd}{f}$ for the α -substituent, and in the order of $5\frac{th}{>} 4\frac{th}{>} 2\frac{nd}{f}$ for the β -substituent.
- 2) Both for $\alpha-$ and $\beta-substituents, <math display="inline">S_r{}^N$ increases as the absolute value of α_X increases. The rate of increase becomes smaller

TABLE 8 THE VALUE OF S_r^N WHEN α_Y AND β_{CY} ARE CHANGED IN MONOSUBSTITUTED, 5-MEMBERED RINGS (WHERE α_X = α + 0.5 β , β_{CX} = 0.6 β)

α-s	ubstituent						1 1 1 m m s			 		j same eg
β _{СΥ}	αγ	SN		. S ₂ N		S _a N .	Arity Ma	C N				
4. 0044 6	$\alpha + 2\beta$	0.3288		0.8004	*2.5			S.N		S,N	.1.	S_2 , N
	$\alpha+1.58$	0.3119	100 11	0.7879		0.4928		0.6197	5.	0.7178	(A)	0.07644
, B	α + β	0.2885		0.7659		0.4500		0.6238	120 27 4	0.6998	1 1 .	0.1035 0.1460
	$\alpha + 0.5\beta$	0.2549	7278	0.7259	. 1. 1	0.4193	A CONTRACTOR OF THE PARTY OF TH	0.6265		0.6372	And the second	0.2144
	α+2β	0.3831		0.8114		0.5628		0.6134		0.7753	1	0.02957
0.00	$\alpha + 1.5\beta$	0.3755	133.5	0.8078	in lar	0.5536		0.6142	4 1	0.7671	Ĵ.	0.02937
0.6β	$\alpha + \beta$	0.3640	753 (1) 4 (25)	0.8007	iI	0.5403	1.7	0.6154	2	0.7545		0.06199
34:3:5: \	$\alpha + 0.5 \beta$	0.3447		0.7854		0,5196	interior (1) State of the	0.6171	" Show !	0.7333		0.1013
11/1/2012	$\alpha + 2\beta$	0.4137	, · · · · .	0.8125	30(10)	0,6042	3.03	0.6101	5%	0.8081	$\mathcal{Y}^{k} = \mathbb{R}^{n}$	0.003386
0.28	$\alpha+1.5\beta$	0.4127	4.1	0.8122	33	o. 6030		0.6102	i Witt	0.8071		0.004825
	$\alpha + \beta \rightarrow \beta $	0.4113	100	0.8115	2 2	0.6012	\\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\	0.6103	3	0.8055		0.007428
	$\alpha + 0.5 \beta$	0.4086		0.8099		0.5981		0.6106	3 is n	0.8025		0.01291
β-s	ubstituent	•	13.34.		######################################		30,6	·. ·	-3		1	10,11
		á. J		*			119 1 16 E.M.					12
βcr	ay)	SiN		S ₂ N	304 504	S ₃ N	力性整。 1530年)	SAN		S ₅ N		S3,N
	Section (Complete	S ₁ N 0.3840		S_2^N 0.6854		. S₃N 0.6078	(1)(4) (1)(4) (1)(4)	S ₄ N 0.589		S ₅ N 0.8227		S ₃ , N 0.04869
	ay			5 T	Jan 18 1 1		開発した。	-	F			
	α _Υ (α+2β	0.3840		0.6854	45.	0.6078		0.589	i , in	0.8227		0.04869
	$\begin{array}{c} \alpha_{\rm Y} \\ \alpha + 2\beta \\ \alpha + 1.5\beta \end{array}$	0.3840 0.3773		0.6854 0.6615	i di sa	0.6078 0.6024		0.589 0.587	l , ju 3	0.8227 0.8248		0.04869 0.06494
	$\begin{array}{c} \alpha_{Y} \\ \alpha + 2\beta \\ \alpha + 1.5\beta \\ \alpha + \beta \end{array}$	0.3840 0.3773 0.3676		0.6854 0.6615 0.6277	4	0.6078 0.6024 0.5930		0.589 0.587 0.585	1 , in 3 desi	0.8227 0.8248 0.8276		0.04869 0.06494 0.09033
βer	$\begin{array}{c} \alpha_{Y} \\ \alpha + 2\beta \\ \alpha + 1.5\beta \\ \alpha + \beta \\ \alpha + 0.5\beta \end{array}$	0.3840 0.3773 0.3676 0.3524 0.4049 0.4021		0.6854 0.6615 0.6277 0.5769	4.	0.6078 0.6024 0.5930 0.5757		0.589 0.587 0.585 0.5849	1 (1) 3 (1) (1) 4 (1)	0.8227 0.8248 0.8276 0.8315		0.04869 0.06494 0.09033 0.1324
	α_{Y} $\begin{cases} \alpha + 2\beta \\ \alpha + 1.5\beta \\ \alpha + \beta \\ \alpha + 0.5\beta \end{cases}$ $\begin{cases} \alpha + 2\beta \\ \alpha + 1.5\beta \\ \alpha + \beta \end{cases}$	0.3840 0.3773 0.3676 0.3524 0.4049 0.4021 0.3979		0.6854 0.6615 0.6277 0.5769 0.7642 0.7542 0.7392		0.6078 0.6024 0.5930 0.5757 0.6104 0.6088 0.6058		0.589 0.587 0.585 0.584 0.601	1 (1) 3 3 4 (2) 4	0.8227 0.8248 0.8276 0.8315 0.8162		0.04869 0.06494 0.09033 0.1324 0.01841
βer	$\alpha_{\mathbf{Y}}$ $\begin{cases} \alpha + 2\beta \\ \alpha + 1.5\beta \\ \alpha + \beta \\ \alpha + 0.5\beta \end{cases}$ $\begin{cases} \alpha + 2\beta \\ \alpha + 1.5\beta \end{cases}$	0.3840 0.3773 0.3676 0.3524 0.4049 0.4021		0.6854 0.6615 0.6277 0.5769 0.7642 0.7542		0.6078 0.6024 0.5930 0.5757 0.6104 0.6088		0.589 0.587 0.585 0.5849 0.601 0.600		0.8227 0.8248 0.8276 0.8315 0.8162 0.8170		0.04869 0.06494 0.09033 0.1324 0.01841 0.02510
βer	$\alpha_{\mathbf{Y}}$ $\begin{pmatrix} \alpha + 2\beta \\ \alpha + 1.5\beta \\ \alpha + \beta \\ \alpha + 0.5\beta \end{pmatrix}$ $\begin{pmatrix} \alpha + 2\beta \\ \alpha + 1.5\beta \\ \alpha + \beta \\ \alpha + 0.5\beta \end{pmatrix}$ $\begin{pmatrix} \alpha + 2\beta \\ \alpha + 2\beta \end{pmatrix}$ $\langle \alpha + 2\beta \rangle$	0.3840 0.3773 0.3676 0.3524 0.4049 0.4021 0.3979 0.3907 0.4162		0.6854 0.6615 0.6277 0.5769 0.7642 0.7542 0.7392 0.7146		0.6078 0.6024 0.5930 0.5757 0.6104 0.6088 0.6058 0.5997		0.589 0.587 0.585 0.5849 0.600 0.599 0.597	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.8227 0.8248 0.8276 0.8315 0.8162 0.8170 0.8183	· · · · · · · · · · · · · · · · · · ·	0.04869 0.06494 0.09033 0.1324 0.01841 0.02510 0.03622
βcx 0.6 β	α_{Y} $\begin{pmatrix} \alpha+2\beta \\ \alpha+1.5\beta \\ \alpha+\beta \\ \alpha+0.5\beta \end{pmatrix}$ $\begin{pmatrix} \alpha+2\beta \\ \alpha+1.5\beta \\ \alpha+0.5\beta \end{pmatrix}$ $\begin{pmatrix} \alpha+2\beta \\ \alpha+0.5\beta \\ \alpha+0.5\beta \end{pmatrix}$ $\begin{pmatrix} \alpha+2\beta \\ \alpha+1.5\beta \end{pmatrix}$	0.3840 0.3773 0.3676 0.3524 0.4049 0.4021 0.3979 0.3907 0.4162 0.4159		0.6854 0.6615 0.6277 0.5769 0.7642 0.7542 0.7392 0.7146 0.8069 0.8057		0.6078 0.6024 0.5930 0.5757 0.6104 0.6088 0.6058 0.5997 0.6098		0.589 0.587 0.585 0.5849 0.600 0.599 0.597 0.608 0.608	1 3 4 4 3 3 0 7 7 5 5	0.8227 0.8248 0.8276 0.8315 0.8162 0.8170 0.8183 0.8202 0.8128 0.8129	1 .	0.04869 0.06494 0.09033 0.1324 0.01841 0.02510 0.03622 0.05668 0.002089 0.002879
βer	α_{Y} $\begin{pmatrix} \alpha + 2\beta \\ \alpha + 1.5\beta \\ \alpha + \beta \\ \alpha + 0.5\beta \end{pmatrix}$ $\begin{pmatrix} \alpha + 2\beta \\ \alpha + 1.5\beta \\ \alpha + \beta \\ \alpha + 0.5\beta \end{pmatrix}$ $\begin{pmatrix} \alpha + 2\beta \\ \alpha + 1.5\beta \\ \alpha + \beta \end{pmatrix}$ $\alpha + \beta$	0.3840 0.3773 0.3676 0.3524 0.4049 0.4021 0.3979 0.3907 0.4162 0.4159 0.4154		0.6854 0.6615 0.6277 0.5769 0.7642 0.7392 0.7146 0.8069 0.8057 0.8039		0.6078 0.6024 0.5930 0.5757 0.6104 0.6088 0.6058 0.5997 0.6098 0.6097		0.589 0.587 0.585 0.584 0.600 0.600 0.599 0.597 0.608 0.608	1	0.8227 0.8248 0.8276 0.8315 0.8162 0.8170 0.8183 0.8202 0.8128 0.8129 0.8131		0.04869 0.06494 0.09033 0.1324 0.01841 0.02510 0.03622 0.05668 0.002089 0.002879 0.004230
βcx 0.6 β	α_{Y} $\begin{pmatrix} \alpha+2\beta \\ \alpha+1.5\beta \\ \alpha+\beta \\ \alpha+0.5\beta \end{pmatrix}$ $\begin{pmatrix} \alpha+2\beta \\ \alpha+1.5\beta \\ \alpha+0.5\beta \end{pmatrix}$ $\begin{pmatrix} \alpha+2\beta \\ \alpha+0.5\beta \\ \alpha+0.5\beta \end{pmatrix}$ $\begin{pmatrix} \alpha+2\beta \\ \alpha+1.5\beta \end{pmatrix}$	0.3840 0.3773 0.3676 0.3524 0.4049 0.4021 0.3979 0.3907 0.4162 0.4159		0.6854 0.6615 0.6277 0.5769 0.7642 0.7542 0.7392 0.7146 0.8069 0.8057		0.6078 0.6024 0.5930 0.5757 0.6104 0.6088 0.6058 0.5997 0.6098		0.589 0.587 0.585 0.5849 0.600 0.599 0.597 0.608 0.608	1	0.8227 0.8248 0.8276 0.8315 0.8162 0.8170 0.8183 0.8202 0.8128 0.8129		0.04869 0.06494 0.09033 0.1324 0.01841 0.02510 0.03622 0.05668 0.002089 0.002879

in the order of $S_5{}^N \ \underline{\circ}\ S_4{}^N \ \gg \ S_3{}^N$ for the α -substituents, and in the order of $S_5{}^N \ > \ S_2{}^N \ > \ S_4{}^N$ for the β -substituents.

(2) Effect of β_{CX}

1) The order of magnitude of $S_r{}^N$ is determined by α_X for the α -substituent, and it changes in the order of $S_5{}^N > S_4{}^N > S_3{}^N$, irrespective of β_{CX} . In the case of the β -substituent, it is determined by β_{CX} . When the absolute value of β_{CX} is larger than 0.4 β , it becomes smaller in the order of $S_5{}^N > S_2{}^N > S_4{}^N$, and when the absolute value of β_{CX} is smaller than 0.4 β , it becomes smaller in the order of $S_5{}^N > S_4{}^N > S_2{}^N$.

TABLE 9 $\text{THE VALUE OF S}_{r}^{N} \text{ WHEN } \alpha_{X}, \ \beta_{CX}, \ \alpha_{Y} \text{ ARE CHANGED IN } \\ \text{MONOSUBSTITUTED, 6-MEMBERED RINGS}$

i) α- substi	tuent (whe	re a. =	α + 0.5	β, β _{cx}	= β)	, · · · · · · · · · · · · · · · · · · ·	100 mg/sil
βεχ πγ	* "	2 N		SIN .	S ₅ N	S ₀ N	S2,N
γα+2β			7654	0.8424	0.7466	0.8165.	0.06758
1.4β $\alpha + \beta$			0.7367	0.8387	0.7028	0.8150	0.1263
	4.5			0.8283	0.6046	0.8040	0.2813
β $\alpha + 2\beta$ $\alpha + \beta$		**	0.7702 0.7528	0.9552 0.9425	0.7392 0.6969	0.9800 0.9802	0.08667 0.1621
Silver da la la	the state of the s		0.7373	0.9053	0.6091	0.9798	0.3483
$/\alpha + 2\beta$	0.8333		0.7765	1.0728	0.7347	1.1336	0.1084
0.8β $\alpha+\beta$	0.7510 0.	9350	0.7704	1.0452	0.6954	1.1273	0.2059
a la company			0.7911	0.9648	0.6242	1.1102	0.4453
ii) α-substit	cuent (wher	eα _x =	$\alpha + 2\beta$	$\beta_{cy} = \beta$)		
βcx αγ	S ₁ N	52 N	S_3N	S ₄ N	S3N	SoN	S2'N
$\alpha + 2\beta$	0.4881 1.		0.8038	1.3686	0.7265	1.4807	0.1523
β $\alpha + \beta$			0.8189	1.2773	0.6923	1.4283	0.2866
	0.2867 0.	7812	0.8809	1.0686	0.6462	1.3146	0.5894

2) For both α -and β -substituents, $S_r{}^N$ decreases as the <u>/671</u> absolute value of β_{CX} increases, irrespective of α_X . The rate of decrease becomes smaller in the order of $S_5{}^N \sim S_4{}^N >> S_3{}^N$ for the α -substituents, and in the order of $S_5{}^N > S_4{}^N > S_2{}^N$ for the β -substituents.

3.1.2 Effect of Substituent Base

The same parameters as used in (2.1.2) to compute $\mathbf{S_r}^E$ are used in computing $\mathbf{S_r}^N$. The results are tabulated in Table 8, and the conclusions associated with this are described below.

(1) Effect of α_Y

- 1) For both $\alpha-$ and $\beta-substituents, the order of magnitude of <math display="inline">S_r{}^N$ is determined by α_X , and it is independent of $\alpha_Y.$
- 2) For both $\alpha-$ and $\beta-$ substituents, $S_r{}^N$ decreases, irrespective of α_Y , as the absolute value of β_{CY} increases. The rate of decrease becomes smaller in the order of $S_5{}^N > S_3{}^N >> S_4{}^N$ for the $\alpha-$ substituent, and in the order of $S_2{}^N >> S_5{}^N \ \underline{\ } \ S_4{}^N$ for the $\beta-$ substituents.

TABLE 10 THE VALUE OF S $_{r}^{N}$ WHEN α_{X} , β_{CX} , α_{Y} ARE CHANGED IN MONOSUBSTITUTED, 6-MEMBERED RINGS

i) a-substituent (when	$re \alpha_x = \alpha + 0$	0.5 β , $\beta_{cy} = \beta$		
βcx α _Y S ₁ ^N	S2N S3N	S,N S	SON SON	S3,N
$(\alpha+2\beta)$ 0.5787 , 0	.7403 7 0.7948	0.7668 0.	8365 0.7210	0.07388
	.7124 0.7532		8337 0.6776	0.1389
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.7106		8304 0.6401 8299 0.8801	0.2025
0 0126	0.9125 0.7899 0.8911 0.7493	44.44.5 The second of the seco	8269 0.8310	0.1399
· 使拉斯马特·特殊 (1) [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	0.7072		8233 0.7866	0.2061
	.0861 0.7861	1.0218	8249 1.0418	0.07345
$0.8\beta \qquad \qquad \alpha + \beta \qquad \qquad 1 \setminus 0153 \qquad \qquad 1$.0714 0.7463		8216 0.9871	0.1405
$\alpha + 0.5 \beta$ 1.0110 3 1	.0666 0.7047	0.9444 0.	8179 0.9352	0.2092
i) β-substituent (where	$e \alpha_{\mathbf{x}} = \alpha + 2$	CV		·
β_{CX} α_{X} β_{I}^{N}	S2N W SN		S,N S,N	SiN
- 現場 : 5 (4)(8)(5) [4] [4] [4] [4] [4] [4] [4] [4] [4] [4]	0.7844		8197 1.4712 8160 1.3988	0.07418
	1.5661 0.7456 1.5852 0.7044		8120 1.3242	0.2196
		Control of the second		West officered

(2) Effect of β_{CY}

- 1) For both $\alpha-$ and $\beta-substituents, the order of magnitude of <math display="inline">S_r{}^N$ does not depend on $\beta_{CY}.$ Namely, it is determined by $\alpha_X.$
- 2) For both $\alpha-$ and $\beta-$ substituents, $S_r{}^N$ decreases as the absolute value of β_{CY} increases, irrespective of $\alpha_Y.$ The rate of decrease is in the order of $S_5{}^N \ \underline{\sim}\ S_3{}^N \ > \ S_4{}^N$ for the $\alpha-$ substituent, and in the order of $S_2{}^N \ >> \ S_5{}^N \ \underline{\sim}\ S_4{}^N$ for the $\beta-$ substituent.

From these results, the following conclusions are reached:

- 1) The site undergoing nucleophilic reactions depends on the electric negativity of heteroatoms for both $\alpha-$ and $\beta-$ substituents. For a larger electric negativity, the $5\frac{th}{t}$ position is most reactive, while for a smaller electric negativity the $4\frac{th}{t}$ position is most reactive.
- 2) For both α and β -substituents, the electric negativity of substituent bases, as well as the overlapping of wave functions of substituent bases with those of adjacent carbon atoms, has a small effect on $S_r{}^N$. The reactivity of substituted ring compounds is determined by the kind of heteroatoms. The larger the electric negativity of heteroatoms,

i) 7-substituent (where $\alpha_{x} = \alpha + 0.5\beta$,	$\beta_{CV} = 1$	3)	"为五国的"。第
- 巻とうごう 「「すっちはんしゅう」 マード こうしょう おおかり シェル・チャン しょうしゅう しゅうしゅう オカー・ディング しゅうしゅう オカー・ディング しゅうしゅう	S ₈ N	S.N	SAIN S
The contract of the contract o	0.7578		0.07157
	0.7275	0.7497	
the substitute of the substitu).6748 >	√2 0.6368	
	0.7504 A		。相對等,0.08982
- 2.1 No. 3.4 No. 3.).7213	5.45	0.1719
[26](1996年1996年1997)	0.6780	0.6745	工人心理 电线
"我" 是一点 爱爱的话,"我们们,我们们是我们的人们的特殊的。" 计通过数据数据 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	3.7458 _{.;}	1.0040	100013155 St. 1
and the state of t	0.7195	0.9206	
and the second of the contract	0.6898		0.4998
ii) 7- substituent (where $\alpha_{\rm X} = \alpha + 2\beta$, $\beta_{\rm C}$	$_{\rm cy} = \beta$)	•	જેડિક નોર્જા (જેડિક) જેવા જેડિક નોર્જા (જેડિક) જેડિક જેડ
$\beta_{\rm cx}$ $\alpha_{\rm x}$ $S_{\rm i}N$	S ₈ N	S_4N	STRAME SUN AL
$(\alpha + 2\beta)$ 0.4958 1.4176	7370	1.2685	0.1580
	7150	1.1064	0.3092
α	0.7029	0.7550	0.6620
			and the second of the second

and the smaller the overlapping of wave functions of heteroatoms with those of adjacent carbon atoms, the larger $\mathbf{S_r}^N$ becomes and the more reactive it becomes.

3) The properties of heteroatoms and substituent bases have less effect on $\mathbf{S_r}^N$ than they do on $\mathbf{S_r}^E$.

3.2 Monohetero, 6-Membered Ring Compounds

Using the same parameters as in the case of S_r^E of monohetero 6-membered ring compounds, we may compute S_r^N , and the results are depicted in Tables 9, 10, 11 and 12. The conclusions associated with this are presented below.

3.2.1 α-Substituent

- (1) The maximum site of $S_r{}^N$ depends on β_{CX} , irrespective of α_Y and α_X . When β_{CX} is 1.4 β , it is at the $4\frac{th}{}$ position, but at the $6\frac{th}{}$ position for 0.8 β .
- (2) When $\beta_{CX}=\beta$, $S_3{}^N$, $S_4{}^N$, and $S_6{}^N$ increase, irrespective of α_Y , as the absolute value of α_X increases. The rate of increase is in the order of $S_6{}^N > S_4{}^N >> S_3{}^N$. The effect of α_X on $S_5{}^N$ depends on α_Y .

TABLE 12

THE VALUES OF S_r^N WHERE α_Y IS CHANGED IN MONOSUBSTITUTED, 6-MEMBERED RINGS (WHERE $\alpha_X = \alpha$, $\beta_{CY} = \beta$)

- (3) When $\alpha_X = \alpha + 0.5\beta$, $S_3{}^N$, $S_4{}^N$ and $S_6{}^N$ decrease irrespective of α_Y , as the absolute value of β_{CX} increases. The rate of decrease is in the order of $S_6{}^N > S_4{}^N >> S_3{}^N$. The effect of β_{CX} on $S_5{}^N$ is dependent on α_Y .
- (4) Irrespective of α_X and β_{CX} , $S_4{}^N$, $S_5{}^N$ and $S_6{}^N$ increase as the absolute value of α_Y increases. The rate of increase is in the order of $S_5{}^N > S_4{}^N > S_6{}^N$. The effect of α_Y on $S_3{}^N$ is dependent on α_X and β_{CX} .

3.2.2 β-Substituent

<u>/672</u>

- (1) The maximum site of S_r^N changes with β_{CX} , irrespective of α_Y . When the absolute value of α_X becomes larger and that of β_{CX} becomes smaller, it is at the 2nd position. When the absolute value of α_X becomes smaller and that of β_{CX} becomes larger, it moves to the 5th position.
- (2) When $\beta_{CX} = \beta$, S_5^N decreases irrespective of α_Y as the <u>/673</u> absolute value of α_X increases, but S_2^N , S_4^N and S_6^N increase. The rate of increase is in the order of $S_2^N > S_6^N > S_4^N$.
- (3) When $\alpha_X = \alpha + 0.5\beta$, $S_5{}^N$ increases irrespective of α_Y as the absolute value of β_{CX} increases, but $S_2{}^N$, $S_4{}^N$ and $S_6{}^N$ decrease. The rate of decrease is in the order of $S_2{}^N > S_6{}^N > S_4{}^N$.
- (4) Irrespective of α_X and β_{CX} , S_r^N increases as the absolute value of α_Y increases. The effect of α_Y on S_r^N is smaller than that of β_{CX} and α_X on S_r^N .

3.2.3 γ-Substituent

(1) The maximum site of S_r^N is at the $2^{\underline{nd}}$ position and is

TABLE 13

THE VALUE OF s_r^R WHEN α_X AND β_{CX} ARE CHANGED IN MONOSUBSTITUTED, 5-MEMBERED RINGS (WHERE α_Y = α = β , β_{CY} = β)

	α-substi	tuent	orj				· 1 · · · · ·	į,
βсх	$\alpha_{\mathbf{X}}$			SaR	S_4R	S ₅ R	S_2, R	Ì
1	$\alpha + \beta$	0.7930	1.1328	1.4317	1.0410	1.5962	1.5962	
• .]	$\alpha + 0.5 \beta$	1.0218	1.2351	1.4257		1.5426	1.7467	
∂ β }	α	1.4202	1.4987	1.4202	1.4796	1.4796	2.0648	
	$\alpha - 0.5 \beta$	2.4775	2.4300	1.4159	2.4515	1.4119	3.0519	
($\alpha + \beta$		1.1030	1.4581	0.9311	1.7236	1.4352	
0.68	$\alpha + 0.5 \beta$	1.4513	1.1844	1.4500		1.6744	1.5646	į
0.06	α	3.1957	1.6638	1.4397	1.5678	1.5971	2.1151	Ċ
	$\alpha - 0.5 \beta$				· - ·) 	,. — i	1.
1.	$\alpha + \beta$	0.9969	1.1018	1.4877	0.8649	1.8333	1.3087	
0.2β	$\alpha + 0.5 \beta$	1.9156	1.1172	1.4853	0.8867	1.8222	1.3359	
0.28	α					1.7924	2.2431	
) · · · · ($\alpha = 0.5 \beta$	<u> </u>			-			٠.
identi 💉	β-substi	tuent		ing and the second		,		
βсх	αχ	S_1^R	S_2R	S_3R	S_4R	S ₅ R	Sat R	1
io. ($\alpha + \beta$	0.8477	1.5435	1.0334	0.9872	1.1621	1.5721	
	$\alpha + 0.5 \beta$	1.0814	1.4852	1.1815	1,1191	1.2402	1.7346	٠.
β	α	1.4796	1.4202	1.4987	1.4202	1.4796	2.0648	
	$\alpha - 0.5 \beta$	2,5299	1.3550	2.4865	2.3934	2.3893	3.0628	ž,
1	α+β .	0.9909	1.6855	0.8918	0.9077	1.2001	1.3663	*.
0.6β	$\alpha + 0.5 \beta$	1.5304	1.6277	1.0116	1.0039	1.2462	1.5089	.1
0.00	α	3.3017	1.5395	1.5530	1.5144	1.6773	2.0785	
*	$\alpha = 0.5 \beta$					<u> </u>		
$i_{ij} \geq i_{i}$	$\alpha + \beta$	1.0090	1.8056	0.8085	0.9038	1.2870	1.1994	ċ
0.2β	$\alpha + 0.5 \beta$	1.9418	1.7922	0.8303	0.9177	1.2900	1.2290	2
U.Z.P	α	25.2196	1.7526	1.7236	1.7911	2.1298	2.1417	
11	$\alpha = 0.5 \beta$	* . 			أ خيد		-	٠.

Note (a): Since the maximum orbital becomes an anti-bonding orbital [refer to note 6 of (Ref. 1)], S_r^R cannot be computed.

independent of α_X , β_{CX} , and α_Y .

- (2) When $\beta_{CX}=\beta$, $S_2{}^N$ increases irrespective of α_Y as the absolute value of α_X increases. The effect of α_X on $S_3{}^N$ is dependent on α_Y .
- (3) When $\alpha_X = \alpha + 0.5\beta$, $S_2{}^N$ decreases irrespective of α_Y as the absolute value of β_{CX} increases. But the effect of β_{CX} on $S_3{}^N$ is dependent on α_Y .

(4) Irrespective of α_X and β_{CX} , $S_2^{\ N}$ and $S_3^{\ N}$ increase as the absolute value of α_Y increases. The effect of α_Y on $S_r^{\ N}$ is smaller than that of β_{CX} and α_X on $S_r^{\ N}$.

The following conclusions may be drawn from these results:

- (1) For every α -, β and γ -substituent, the effect of the electric negativity of substituent bases on S_r^N is smaller than that of the electric negativity of heteroatoms; this also holds true for the effect on the overlapping of wave functions of heteroatoms with those of adjacent carbon atoms.
- (2) The larger the electric negativity of heteroatoms and the smaller the overlapping of wave functions of heteroatoms with those of adjacent carbon atoms, the larger the values of S_2^N , S_4^N and S_6^N become.

4. RADICAL REACTIVITY s_r^R

4.1 Monohetero 5-Membered Ring Compounds

4.1.1 Effect of Heteroatoms

The same parameters used for $\mathbf{S_r}^E$ in 2.1.1 are used in computing $\mathbf{S_r}^R$. The results are shown in Table 13, and the conclusions associated with this are described below.

(1) Effect of α_X

- 1) The order of magnitude of α_{X} depends on $\textbf{S}_{\textbf{r}}{}^{R}\textbf{.}$
- (i) When the absolute value of α_X is larger than α , $S_r{}^R$ becomes smaller in the order of $5\frac{th}{}>3\frac{rd}{}>4\frac{th}{}$ for the α -substituent, and in the order of $2\frac{nd}{}>5\frac{th}{}>4\frac{th}{}$ for the β -substituent.
- (ii) When the absolute value of α_X is smaller than α , $S_r{}^R$ becomes smaller in the order of $4\frac{th}{}>5\frac{th}{}>3\frac{rd}{}$ for the α -substituent, and in the order of $5\frac{th}{}>4\frac{th}{}>2\frac{nd}{}$ for the β -substituent.
- 2) Irrespective of β_{CX} , $S_4{}^R$ decreases as the absolute value of α_X increases for the α -substituent. The rate of increase of $S_5{}^R$ is greater than that of $S_3{}^R$.

In the case of the β -substituent, S_2^R increases as the absolute value of α_X increases, but S_5^R and S_4^R decrease. The rate of decrease of S_4^R is less than that of S_5^R .

TABLE 14 THE VALUE OF s_r^R WHEN α_X AND β_{CX} ARE CHANGED IN MONOSUBSTITUTED, 5-MEMBERED RINGS (WHERE $\alpha_X = \alpha + 0.5\beta$, $\beta_{CX} = 0.6\beta$)

α ∽ s	ubstitue	nt	4 4 6 6 6			J 1974.	V., 198	· · · · · · · · · · · · · · · · · · ·
βcr	αγ	S ₁ R	S ₂ R	Sak	S₄R		ς₃R	S_2 , R
	$\alpha + 2\beta$	1.2903	1.1466	1.07	94 🛴 0.965	8 1.	3043	0.6630
A	$\alpha + 1.5 \beta$	1.3323	1.1552	1.18	17 0.988		4073	0.9335
李 到底。	$\alpha + \beta$	1.4513	1.1844		00 1.042	4 . 1.	6744	1.5646
	$\alpha + 0.5 \beta$	1.2549	1.4459)	93	5 . 3.	3572	5.0944
1 13 13 1	$\alpha + 2\beta$	1.2488	1.1230	0.95	24 0.925	1	1649	0.5576
0.68	$\alpha+1.5\beta$	1.2577	1.1254	0.97	71 . 0.931	8 1.	1906	0.7589
	$\alpha + \beta$	1.2811	1.1309	1.03	55 0.945	6 1.	2498	1.1808
	$\alpha + 0.5 \beta$	1.3854	1.160	l , 1.26	90 👙 0.991	8	4826	2.6409
3 2541	$\alpha + 2\beta$	1.2382	1.1093	0.90	93 0.906	9 1.	1132 58,0	0.5064
0.28	$\alpha+1.5\beta$	1.2389	1.1096	0.91	15	6 / 1.	1155	0.6768
	$\alpha + \beta = \pm$	1.2407	1.110			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1207	1.0194
東州 東西人	$\alpha + 0.5 \beta$	1.2481	1.112	0.93	39 0.912	8 . 1.	1383	2.0613
β- :	substitu	ent	1. 1.			1.00		
β- : βcr	substitu αγ	ent S _i R }	S₂R	S ₃ /	S ₄ R		S₅R	S ₈ ,R
			S_2R	,			S ₅ R	S ₈ , R 0.6352
	$\alpha_{\mathbf{Y}}$ $\alpha + 2\beta$ $\alpha + 1.5\beta$	S ₁ R 1.3455 1.3977	1.2719 1.3690	0.95 0.96	40 0.93	3 7 1.		N. 7
	α_{Y} $\alpha + 2\beta$ $\alpha + 1.5\beta$ $\alpha + \beta$	S ₁ R 1.3455 1.3977 1.5304	1.2719 1.3690 1.627	0.95 0.96 7 1.01	40 0.938 98 0.954 16 1.003	3 1. 5 1.	.1689 .1921 .2462	0.6352 0.8949 1.5089
	$\alpha_{\mathbf{Y}}$ $\alpha + 2\beta$ $\alpha + 1.5\beta$	S ₁ R 1.3455 1.3977	1.2719 1.3690	0.95 0.96 7 1.01	40 0.938 98 0.954 16 1.003	3 1. 5 1.	.1689 .1921	0.6352 0.8949
	α_{Υ} $\alpha + 2\beta$ $\alpha + 1.5\beta$ $\alpha + \beta$ $\alpha + 0.5\beta$ $\alpha + 2\beta$	S ₁ R 1.3455 1.3977 1.5304	1.2719 1.3690 1.627	0.95 0.96 1.01 1.29	40 0.935 98 0.954 16 1.005 57 1.304	3 1. 5 1. 9 1.	.1689 .1921 .2462	0.6352 0.8949 1.5089
βcr	α_{Υ} $\alpha + 2\beta$ $\alpha + 1.5\beta$ $\alpha + \beta$ $\alpha + 0.5\beta$ $\alpha + 2\beta$ $\alpha + 1.5\beta$	S ₁ R 1.3455 1.3977 1.5304 2.3524 1.2705 1.2843	1.2719 1.3690 1.6277 3.2969 1.1537	0.95 0.96 7 1.01 9 1.29 7 0.92 6 0.92	40 0.933 98 0.954 16 1.003 57 1.304 20 0.913	3 1, 5 1, 9 1, 9 1,	.1689 .1921 .2462 .5515	0.6352 0.8949 1.5089 5.0124
	α_{Υ} $\alpha + 2\beta$ $\alpha + 1.5\beta$ $\alpha + \beta$ $\alpha + 0.5\beta$ $\alpha + 2\beta$ $\alpha + 1.5\beta$ $\alpha + \beta$	S ₁ R 1.3455 1.3977 1.5304 2.3524 1.2705 1.2843 1.3150	1.2719 1.3690 1.627 3.2969 1.153 1.1770 1.234	0.95 0.96 7 1.01 9 1.29 7 0.92 6 0.92 5 0.93	40 0.93! 98 0.954 16 1.003 57 1.304 20 0.913 64 0.915 60 0.929	3 1, 5 1, 19 1, 19 1, 10 1, 10 1,	.1689 .1921 .2462 .5515 .1278 .1346 .1484	0.6352 0.8949 1.5089 5.0124 0.5465 0.7426 1.1551
βcr	α_{Υ} $\alpha + 2\beta$ $\alpha + 1.5\beta$ $\alpha + \beta$ $\alpha + 0.5\beta$ $\alpha + 2\beta$ $\alpha + 1.5\beta$	S ₁ R 1.3455 1.3977 1.5304 2.3524 1.2705 1.2843	1.2719 1.3690 1.6277 3.2969 1.1537	0.95 0.96 7 1.01 9 1.29 7 0.92 6 0.92 5 0.93	40 0.93! 98 0.954 16 1.003 57 1.304 20 0.913 64 0.913 60 0.928	3 1, 5 1, 19 1, 19 1, 10 1, 10 1,	.1689 .1921 .2462 .5515 .1278	0.6352 0.8949 1.5089 5.0124 0.5465 0.7426
βcr	α_{Υ} $\alpha + 2\beta$ $\alpha + 1.5\beta$ $\alpha + \beta$ $\alpha + 0.5\beta$ $\alpha + 2\beta$ $\alpha + 1.5\beta$ $\alpha + \beta$	S ₁ R 1.3455 1.3977 1.5304 2.3524 1.2705 1.2843 1.3150	1.2719 1.3690 1.627 3.2969 1.153 1.1770 1.234	0 0.95 0 0.96 7 1.01 9 1.29 7 0.92 6 0.92 5 0.93	40 0.933 98 0.954 16 1.003 57 1.306 20 0.913 64 0.913 60 0.923 44 0.973	13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.1689 .1921 .2462 .5515 .1278 .1346 .1484	0.6352 0.8949 1.5089 5.0124 0.5465 0.7426 1.1551
βοτ	α_{Y} $\alpha + 2\beta$ $\alpha + 1.5\beta$ $\alpha + \beta$ $\alpha + 0.5\beta$ $\alpha + 2\beta$ $\alpha + 1.5\beta$ $\alpha + \beta$ $\alpha + 0.5\beta$	S ₁ R 1.3455 1.3977 1.5304 2.3524 1.2705 1.2843 1.3150 1.4315	1.2719 1.3690 1.6277 3.2960 1.153 1.1770 1.234 1.4640	0 0.95 0 0.96 7 1.01 1.29 7 0.92 6 0.92 5 0.93 0 0.97	40 0.933 98 0.954 16 1.003 57 1.306 20 0.913 64 0.913 60 0.923 44 0.973 67 0.903	13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.1689 .1921 .2462 .5515 .1278 .1346 .1484	0.6352 0.8949 1.5089 5.0124 0.5465 0.7426 1.1551 2.5962
βcr	α_{Y} $\alpha + 2\beta$ $\alpha + 1.5\beta$ $\alpha + \beta$ $\alpha + 0.5\beta$ $\alpha + 2\beta$ $\alpha + 1.5\beta$ $\alpha + \beta$ $\alpha + 0.5\beta$ $\alpha + \beta$ $\alpha + 0.5\beta$ $\alpha + \beta$	S ₁ R 1.3455 1.3977 1.5304 2.3524 1.2705 1.2843 1.3150 1.4315 1.2407 1.2420 1.2420	1.2719 1.3690 1.6277 3.2960 1.1537 1.1770 1.2344 1.4644 1.1112 1.1114	9 0.95 0 0.96 7 1.01 9 1.29 7 0.92 6 0.92 5 0.93 0 0.97 0 0.90 2 0.90 1 0.90	40 0.933 98 0.954 16 1.003 57 1.306 20 0.913 64 0.913 60 0.923 44 0.973 67 0.903 71 0.906	13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.1689 .1921 .2462 .5515 .1278 .1346 .1484 .1948	0.6352 0.8949 1.5089 5.0124 0.5465 0.7426 1.1551 2.5962 0.5051
βοτ	α_{Y} $\alpha + 2\beta$ $\alpha + 1.5\beta$ $\alpha + \beta$ $\alpha + 0.5\beta$ $\alpha + 2\beta$ $\alpha + 1.5\beta$ $\alpha + \beta$ $\alpha + 0.5\beta$ $\alpha + \beta$ $\alpha + 0.5\beta$ $\alpha + 1.5\beta$	S ₁ R 1.3455 1.3977 1.5304 2.3524 1.2705 1.2843 1.3150 1.4315 1.2407 1.2420	1.2719 1.3690 1.6277 3.2960 1.1537 1.1770 1.2344 1.4640	9 0.95 0 0.96 7 1.01 9 1.29 7 0.92 6 0.92 5 0.93 0 0.97 0 0.90 2 0.90 1 0.90	40 0.933 98 0.954 16 1.003 57 1.306 20 0.913 64 0.913 60 0.923 44 0.973 67 0.903 71 0.906 80 0.903	13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.1689 .1921 .2462 .5515 .1278 .1346 .1484 .1948	0.6352 0.8949 1.5089 5.0124 0.5465 0.7426 1.1551 2.5962 0.5051 0.6748

(2) Effect of β_{CX}

- 1) The order of magnitude of $S_r{}^R$ depends on α_X for both $\alpha-$ and $\beta-substituents, and is independent of <math display="inline">\beta_{CX}.$
 - 2) The effect of β_{CX} on $S_{\boldsymbol{r}}{}^{R}$ is dependent on $\alpha_{X}.$
- (i) When the absolute value of α_X is larger than α , $S_4{}^R$ increases as the absolute value of β_{CX} increases for the α -substituent, but $S_3{}^R$ and $S_5{}^R$ decrease. The rate of decrease of $S_5{}^R$ is larger than that of $S_3{}^R$. As for the β -substituent, $S_4{}^R$ increases as the absolute value of β_{CX} increases, but $S_2{}^R$ and $S_5{}^R$ decrease. The rate of decrease of $S_2{}^R$ is larger than that of $S_5{}^R$.

i) α- substituent	(where $\alpha_{\mathbf{x}} = \alpha +$	0,5 β , $\beta_{CV} = \beta$)	35 46 . 7
β_{CX} α_{Y} S_{1}^{R}	S_2R S_3R	S,R S,R	S ₆ R S ₂ ,R
$(\alpha + 2\beta) \qquad 0.5956$	0.6986 0.8866	0.7806 3 0.867	7' 0.7547 0.5521
$\begin{array}{c c} 1.4\beta & \alpha + \beta & 0.6383 \end{array}$	0.6604 0.9717	0.7788 0.937	8 0.7551 1.0664
α 2.4960	0.6152 4.6028	0.8283 4.524	6 0.8040 15.9613
$(\alpha + 2\beta \qquad 0.8266$	0.8879	0.8376 0.856	0.8623 0.5573
β $\alpha + \beta$ 0.8864	0.7211 0.9750	0.8314 0.919	2 0.8691 1.0510
α 2.5778	0.6782 2.7373	0.9053 2.609	0.9798 8.3483
$\alpha + 2\beta \qquad 1.0112$	0.8446 0.8904	0.8949 (0.848	0.9557 0.5639
$\begin{array}{c c} 0.8 \beta & \alpha + \beta & 1.0778 \end{array}$	0.7716 0.9795	. 0.8818 . 0.904	5 0.9639 1.0425
α 2.5834	0.7224 2.0711	0.9648 1.904	2 1.1102 5.5653
i) α- substituent	(where $\alpha_x = \alpha +$	2β , $\beta_{cy} = \beta$)	
βcx S _i R	S2R S3R	S ₄ R S ₆ R	S_0R S_2 , R
$(\alpha + 2\beta) \qquad 0.5881$	0.8902 0.9038	0.9686 0.826	1.0807 0.5523
$\beta \qquad \qquad \alpha + \beta \qquad \qquad 0.5854$	0.7895 0.9856	0.9440 0.859	0.9533
α 0.7867	0.7812 1.3809	1.0686 1.146	1.3146 (1.2.5894
n de la companya de l	A STATE OF THE SECOND SECOND	Constitution of the second of	

(ii) When the absolute value of α_X is smaller than α , /674 $S_r{}^R$ of both $\alpha-$ and $\beta-$ substituents decreases as the absolute value of β_{CX} increases. The rate of decrease is in the order of $S_5{}^R > S_4{}^R > S_3{}^R$ for the $\alpha-$ substituent, and in the order of $S_5{}^R > S_4{}^R > S_2{}^R$ for the $\beta-$ substituent.

4.1.2 Effect of Substituent Base

Using the same parameters as in the case of S_r^E in (2.1.2), we may compute S_r^R . The results are shown in Table 14, and the conclusions are described below.

(1) Effect of α_{Y}

- 1) For both $\alpha-$ and $\beta-substituents, the order of magnitude of <math display="inline">S_r^{\ R}$ is determined by $\alpha_X,$ and is independent of $\alpha_Y^{\ .}$
- 2) For both $\alpha-$ and $\beta-$ substituents, $S_{r}^{\ R}$ rapidly increases as the absolute value of α_{Y} decreases. The rate of increase becomes smaller in the order of $S_{5}^{\ R} > S_{3}^{\ R} > S_{4}^{\ R}$ for the $\alpha-$ substituent, and in the order of $S_{2}^{\ R} > S_{5}^{\ R} > S_{4}^{\ R}$ for the $\beta-$ substituent.

TABLE 16

THE VALUE OF s_r^R WHEN α_X , β_{CX} , α_Y ARE CHANGED IN MONOSUBSTITUTED, 6-MEMBERED RINGS

i) β- substituent (where $\alpha_{x} = \alpha + 0.5$	β , $\beta_{CV} = \beta$)	18 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
βcx α _Y S _i R	S_2^R S_3^R	S_4R S_5R S_6R	S_{2} , R
$(\alpha + 2\beta \qquad 0.5787$		0.8281 0.8365 0.7322	0.7948
1.4 β $\alpha + \beta$ 0.5769 α 0.5746		0.9231 0.8337 0.8638	<i>C</i>
$(\alpha + 2\beta)$ 0.8160	が、100mmには100mmには100mmに100mmに100mmに100mmに100mmに100mmに100mmに100mmに100mmに100mmに100mmに100mmに100mmに100mmに100mmに100mm	0.8330 1.0763	3.30
β $\alpha + \beta$ 0.8136		0.8868 0.8299 0.8801 0.9762 0.8269 0.9560	
α 0.8101	1.2526 2.2061	1.1975 0.8233 1.1616	
$\alpha + 2\beta$ 1.0178	1.0158 0.5734	0.9515 0.8249 115 0.9715	
$0.8\beta + \alpha + \beta = 1.0154$	1.1261 1.1405	1.0353 , 4, 0.8216, 1.0419	0.7463
$\alpha + 0.5\beta$ 1.0110	1.3713 2.2095	1.2491 0.8179 1.2399	0.7047
	here $\alpha_{\mathbf{x}} = \alpha + 2\beta$,	$\beta_{\text{cy}} = \beta$)	20
β_{CX} α_{Y} S_{L}^{R}	S_2R S_3R	S_4^R S_5^R S_5^R	S_2 , R
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.0571 0.8197 1.0962 1.1233 0.8160 1.1488	
$\alpha + 0.5 \beta$ 0.6470		1.1233 0.8160 1.1488 1.3147 0.8120 1.3242	
			4.4.4

(2) Effect of β_{CY}

/675

- 1) The order of magnitude of $S_{\bf r}{}^R$ does not depend on β_{CY} for both $\alpha-$ and $\beta-substituents, but it is determined by <math display="inline">\alpha_X$.
- 2) For both α and β -substituents, $S_r{}^R$ increases as the absolute value of β_{CY} increases, irrespective of α_Y . The rate of increase becomes smaller in the order of $S_5{}^R > S_3{}^R > S_4{}^R$ for the α -substituent, and in the order of $S_2{}^R > S_5{}^R > S_4{}^R$ for the β -substituent.

From these results, the following may be concluded:

- 1) The site undergoing radical reactions depends on the electric negativity of heteroatoms. But the electric negativity of substituent bases and the overlapping of wave functions of heteroatoms with those of adjacent carbon atoms does not affect the reaction site. However, they are related to the reactivity ($\mathbf{S_r}^R$ itself). Thus, the radical reaction is strongly governed by the electric negativity of heteroatoms.
- 2) When heteroatoms possess great electric negativity (e.g., oxygen), they become reactive at the $5\frac{th}{t}$ position for the α -substituent, and at the $2\frac{nd}{t}$ position for the β -substituent. But for those having a smaller electric negativity such as selenium they become reactive

TABLE 17 THE VALUE OF $s_r{}^R$ when α_X , β_{CX} AND α_Y ARE CHANGED IN MONOSUBSTITUTED, 6-MEMBERED RINGS

i) r-substituent	(where α,	$= \alpha + 0.5\beta$	$\beta_{CV} = \beta$	ert.	98 -542
βcx αγ	S_1R	S ₂ R	S _s R	S ₄ R	S.R
$(\alpha+2\beta)$	0.5903	. 0.7460	0.8790	0.7315	0.5561
1.4β $\alpha + \beta$	0.6248	0.7442	0.9625	0.6898	1.0720
	2.4545	0.7940 gang	4.5948	0.6368	15.9607
$(\alpha+2\beta)$	0.8228	0.8420	0.8680	0.7779	0.5604
A + B	0.8732	0.8359	0.9436	0.7234	1.0608
\ a	2.5315	0.9106	2.6780	0.6745	8.3832
$\langle \alpha + 2\beta \rangle$	1.0094	0.9259	0.8596	0.8260	0.5660
0.8β $\alpha + \beta$	1.0668	0.9126	0.9286	0.7572	1.0544
a contract of the second	2.5418	0.9973	1.9698	0.7043	5.6198
ii) γ- substituen	t (where $\alpha_{\mathbf{v}}$	$= \alpha + 2\beta,$	$\beta_{\text{cy}} = \beta$)		
βcx αχ	S_1^R	S_2R	S ₃ R	S ₄ R	S4.R
$(\alpha+2\beta)$	0.5958	1.0176	0.8370	0.8685	0.5580
β $\alpha + \beta$	0.5921	0.9922	0.8817	0.7730	0.9758
α	0.7873	1.1245	1.2029	0.7550	2.6620
3.59	24.	7 "	왕		

at the $4\frac{th}{}$ position for both $\alpha-$ and $\beta-$ substituents. However, as in the case of selenium, the larger overlapping of wave functions due to interlacing with the d-orbital results in a smaller radical reactivity.

4.2 Monohetero, 6-Membered Ring Compounds

Using the same parameters as for S_r^E of monohetero, 6-membered ring compounds, we may compute S_r^R . The results are tabulated in Tables 15, 16, 17 and 18, and the conclusions are described below.

4.2.1 <u>α-Substituent</u>

- (1) The maximum site of S_r^R depends on α_X , β_{CX} and α_Y , especially on α_X . When α_X is equal to α + 0.5 β , it is at the $3\underline{rd}$ position, but is at the 6 \underline{th} position for α + 2 β .
- (2) When $\beta_{CX} = \beta$, S_5^R decreases irrespective of α_Y as the absolute value of α_X increases, but $S_4{}^R$ and $S_6{}^R$ increase. The rate of in- $\underline{/676}$ crease is in the order of $S_6{}^R > S_4{}^R$. Since $S_3{}^R$ is strongly influenced by α_Y , the effect of α_X depends on α_Y , and no general statements can be made.
- (3) When $\alpha_X = \alpha + 0.5\beta$, $S_5{}^R$ increases irrespective of α_Y as the absolute value of β_{CX} increases, but $S_4{}^R$ and $S_6{}^R$ decrease. The rate

TABLE 18

THE VALUE OF s_r^R WHEN α_y is changed in monosubstituted 6-membered rings (where $\alpha_x = \alpha$, $\beta_{CY} = \beta$)

αγ	S_1R	S_2R	S_aR	S ₄ R	S4.R
$\alpha + 2\beta$	0.8700	0.8312	0.8812	0.7895	0.5730
$\alpha + \beta$	0.9527	0.8283	0.9773	0.7485	1.1375
$\alpha + 0.5 \beta$	1.1656	0.8248	1.2057	0.7066	2.2011

of decrease is in the order of $S_6{}^R > S_4{}^R$. Since $S_3{}^R$ is strongly influenced by α_Y , the effect of α_X depends on α_Y , and no general statements can be made in this regard.

(4) Irrespective of α_X and β_{CX} , $S_3{}^R$, $S_5{}^R$ and $S_6{}^R$ decrease as the absolute value of α_Y increases. Since $S_4{}^R$ is strongly influenced by heteroatoms, the effect of α_Y cannot be discussed in general.

4.2.2 β -Substituents

- (1) The maximum site of S_r^R depends on α_X , β_{CX} and α_Y , especially on α_X , and β_{CX} . It is at the $2^{\underline{nd}}$ position when the absolute value of α_X becomes larger and that of β_{CX} becomes smaller. But it is at the $4^{\underline{th}}$ position when the absolute value of α_X becomes smaller and that of β_{CX} becomes larger.
- (2) When $\beta_{CX} = \beta$, $S_5{}^R$ slightly decreases, irrespective of α_Y as the absolute value of α_X increases, but $S_2{}^R$ increases. Since $S_4{}^R$ and $S_6{}^R$ are strongly influenced by α_Y , the effect of α_X depends on α_Y , but it tends to decrease.
- (3) When $\alpha_X = \alpha + 0.5\beta$, $S_5{}^R$ slightly increases, irrespective of α_Y , as the absolute value of α_X increases, but $S_2{}^R$, $S_4{}^R$ and $S_6{}^R$ decrease. The rate of decrease is in the order of $S_2{}^R subseteq S_6{}^R > S_4{}^R$.
- (4) Irrespective of α_X and β_{CX} , $S_5{}^R$ slightly increases as the absolute value of α_Y increases, but $S_2{}^R$, $S_4{}^R$ and $S_6{}^R$ decrease.

4.2.3 γ-Substituents

(1) The maximum site of S_r^R depends on α_X , β_{CX} and α_Y , especially on α_X . When α_X is equal to α + 0.5 β , it is at the 3^{rd} position, but is at the 2^{nd} position for α + 2 β .

- (2) When β_{CX} = β , $S_2^{\ R}$ increases irrespective of α_Y as the absolute value of α_X increases, but $S_3^{\ R}$ decreases.
- (3) When $\alpha_X = \alpha + 0.5\beta$, $S_3{}^R$ increases irrespective of α_Y as the absolute value of β_{CX} increases, but $S_2{}^R$ decreases.
- (4) Irrespective of α_X and β_{CX} , ${S_3}^R$ decreases as the absolute value of α_Y increases. Since ${S_2}^R$ is strongly influenced by heteroatoms, the effect of α_Y cannot be discussed, in general.

From these results, the following conclusions can be drawn:

- . (1) The maximum site of S_r^R is mainly dependent on α_Y and β_{CX} .
- (2) As the electric negativity of the substituent base increases, S_r^R at the o- and p-position decreases. The value of S_r^R at the m-position is not greatly affected by the electric negativity of the substituent base. The effect of the electric negativity of the substituent base on S_r^R depends on such factors as α_X , β_{CX} , the substituent base, heteroatoms, and the relative location of carbon atoms inside the ring.

As the overlapping of wave functions of heteroatoms with those of adjacent carbon atoms increases, and the electric negativity of heteroatoms increases, S_r^R at the 2^{nd} , 4^{th} and 6^{th} position increases. But S_r^R at the 3^{rd} and 5^{th} position is not greatly influenced by heteroatoms.

Scientific Translation Service 4849 Tocaloma Lane La Canada, California